10 research outputs found
Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody
Highly selective monoclonal antibodies recognizing the extracellular 3D epitope of G protein-coupled receptors represent valuable tools for elucidating receptor function and localization in the cell and show promise for a range of therapeutic applications. Here we present the structure of a complex between the human serotonin 2B receptor, captured in an active-like state, and an antibody Fab fragment, bound to the extracellular side of the receptor. The structure uncovers the mechanisms of receptor activation and of extracellular receptor recognition by antibodies
Triptorelin for the treatment of adenomyosis: A multicenter observational study of 465 women in Russia
Effect of complex oxide promoters and Pd on activity and stability of Ni/YSZ (ScSZ) cermets as anode materials for IT SOFC
Effect of fluorite-like or perovskite-like complex oxide promoters, Pd and Cu on the performance of Ni/8YSZ and Ni/ScCeSZ anode materials in CH4 steam reforming (SR) or selective oxidation (SO) by O-2 into syngas was studied. The spatial distribution of dopants in composites before and after contact with the reaction feed, features of components mutual interaction and forms of deposited coke were controlled by TEM combined with EDX analysis. The lattice oxygen mobility and reactivity were estimated by CH4 and H-2 temperature-programmed reduction (TPR), and the amount of deposited carbon after operation in the feed with stoichiometric H2O/CH4 ratio was estimated by the temperature-programmed oxidation. Promoters decrease the amount of deposited coke, while doping by Pd or Cu ensures also a good and stable performance at moderate (similar to 550 degrees C) temperatures required for the intermediate-temperature solid oxide fuel cells (IT SOFC) operation. (c) 2007 Elsevier B.V. All rights reserved.</p
Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody
Preparation of a copper-polymer composite through the thermolysis of copper(II) succinate
A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
