5,632 research outputs found
Searching for Stoponium along with the Higgs boson
Stoponium, a bound state of top squark and its antiparticle in a
supersymmetric model, may be found in the ongoing Higgs searches at the LHC.
Its WW and ZZ detection ratios relative to the Standard Model Higgs boson can
be more than unity from WW* threshold to the two Higgs threshold. The gamma
gamma channel is equally promising. Some regions of the stoponium mass below
150 GeV are already being probed by the ATLAS and CMS experiments.Comment: 10 pages 5 figure
Evidence for Strong-coupling S-wave Superconductivity in MgB2 :11B NMR Study
We have investigated a gap structure in a newly-discovered superconductor,
MgB2 through the measurement of 11B nuclear spin-lattice relaxation rate,
^{11}(1/T_1). ^{11}(1/T_1) is proportional to the temperature (T) in the normal
state, and decreases exponentially in the superconducting (SC) state, revealing
a tiny coherence peak just below T_c. The T dependence of 1/T_1 in the SC state
can be accounted for by an s-wave SC model with a large gap size of 2\Delta
/k_BT_c \sim 5 which suggests to be in a strong-coupling regime.Comment: 2 pages with 1 figur
An embedding potential definition of channel functions
We show that the imaginary part of the embedding potential, a generalised
logarithmic derivative, defined over the interface between an electrical lead
and some conductor, has orthogonal eigenfunctions which define conduction
channels into and out of the lead. In the case of an infinitely extended
interface we establish the relationship between these eigenfunctions and the
Bloch states evaluated over the interface. Using the new channel functions, a
well-known result for the total transmission through the conductor system is
simply derived.Comment: 14 pages, 2 figure
Chandra High Resolution X-ray Spectroscopy of AM Her
We present the results of high resolution spectroscopy of the prototype polar
AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray
spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and
O with several Fe L-shell emission lines. The forbidden lines in the spectrum
are generally weak whereas the hydrogen-like lines are stronger suggesting that
emission from a multi-temperature, collisionally ionized plasma dominates. The
helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma
density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV
gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the
differential emission measure distribution of AM Her whose shape is consistent
with the volume emission measure obtained by multi-temperature APEC model. The
multi-temperature plasma model fit to the average X-ray spectrum indicates the
mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we
find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI
emission modulated by a few hundred to 1000 km/s from the theoretically
expected values indicating bulk motion of ionized matter in the accretion
column of AM Her. The observed velocities of Fe XXVI ions are close to the
expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity
modulation is consistent with that expected from a single pole accreting binary
system.Comment: 6 figures, AASTEX style, accepted for publication in Ap
Universality and Critical Behavior at the Critical-End-Point on Itinerant-Metamagnet UCoAl
We performed nuclear-magnetic-resonance (NMR) measurements on
itinerant-electron metamagnet UCoAl in order to investigate the critical
behavior of the magnetism near a metamagnetic (MM) critical endpoint (CEP). We
derived c-axis magnetization and its fluctuation from the
measurements of Knight shift and nuclear spin-lattice relaxation rate
as a function of the c-axis external field () and temperature (). We
developed contour plots of and on the - phase diagram,
and observed the strong divergence of at the CEP. The critical exponents
of and near the CEP are estimated, and found to be close to the
universal properties of a three-dimensional (3-D) Ising model. We indicate that
the critical phenomena at the itinerant-electron MM CEP in UCoAl have a common
feature as a gas-liquid transition.Comment: 8 Pages, 14 figure
Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})
In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the
K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass
region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500),
f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these
solutions, we determine partial widths for scalar-isoscalar states decaying
into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and
corresponding decay couplings.Comment: Some typos were correcte
Role of the exchange and correlation potential into calculating the x-ray absorption spectra of half-metallic alloys: the case of Mn and Cu K-edge XANES in CuMnM (M = Al, Sn, In) Heusler alloys
This work reports a theoretical study of the x-ray absorption near-edge
structure spectra at both the Cu and the Mn K-edge in several CuMnM (M= Al,
Sn and In) Heusler alloys. Our results show that {\it ab-initio} single-channel
multiple-scattering calculations are able of reproducing the experimental
spectra. Moreover, an extensive discussion is presented concerning the role of
the final state potential needed to reproduce the experimental data of these
half-metallic alloys. In particular, the effects of the cluster-size and of the
exchange and correlation potential needed in reproducing all the experimental
XANES features are discussed.Comment: 15 pages, 5 figure
Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: a combined thermodynamic and NMR study
The nature of the tetragonal-to-orthorhombic structural transition at
K in single crystalline FeSe is studied using shear-modulus,
heat-capacity, magnetization and NMR measurements. The transition is shown to
be accompanied by a large shear-modulus softening, which is practically
identical to that of underdoped Ba(Fe,Co)As, suggesting very similar
strength of the electron-lattice coupling. On the other hand, a
spin-fluctuation contribution to the spin-lattice relaxation rate is only
observed below . This indicates that the structural, or "nematic", phase
transition in FeSe is not driven by magnetic fluctuations
- …
