5,632 research outputs found

    Searching for Stoponium along with the Higgs boson

    Full text link
    Stoponium, a bound state of top squark and its antiparticle in a supersymmetric model, may be found in the ongoing Higgs searches at the LHC. Its WW and ZZ detection ratios relative to the Standard Model Higgs boson can be more than unity from WW* threshold to the two Higgs threshold. The gamma gamma channel is equally promising. Some regions of the stoponium mass below 150 GeV are already being probed by the ATLAS and CMS experiments.Comment: 10 pages 5 figure

    Evidence for Strong-coupling S-wave Superconductivity in MgB2 :11B NMR Study

    Get PDF
    We have investigated a gap structure in a newly-discovered superconductor, MgB2 through the measurement of 11B nuclear spin-lattice relaxation rate, ^{11}(1/T_1). ^{11}(1/T_1) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T_c. The T dependence of 1/T_1 in the SC state can be accounted for by an s-wave SC model with a large gap size of 2\Delta /k_BT_c \sim 5 which suggests to be in a strong-coupling regime.Comment: 2 pages with 1 figur

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure

    Chandra High Resolution X-ray Spectroscopy of AM Her

    Get PDF
    We present the results of high resolution spectroscopy of the prototype polar AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and O with several Fe L-shell emission lines. The forbidden lines in the spectrum are generally weak whereas the hydrogen-like lines are stronger suggesting that emission from a multi-temperature, collisionally ionized plasma dominates. The helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the differential emission measure distribution of AM Her whose shape is consistent with the volume emission measure obtained by multi-temperature APEC model. The multi-temperature plasma model fit to the average X-ray spectrum indicates the mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI emission modulated by a few hundred to 1000 km/s from the theoretically expected values indicating bulk motion of ionized matter in the accretion column of AM Her. The observed velocities of Fe XXVI ions are close to the expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity modulation is consistent with that expected from a single pole accreting binary system.Comment: 6 figures, AASTEX style, accepted for publication in Ap

    Universality and Critical Behavior at the Critical-End-Point on Itinerant-Metamagnet UCoAl

    Full text link
    We performed nuclear-magnetic-resonance (NMR) measurements on itinerant-electron metamagnet UCoAl in order to investigate the critical behavior of the magnetism near a metamagnetic (MM) critical endpoint (CEP). We derived c-axis magnetization McM_c and its fluctuation ScS_c from the measurements of Knight shift and nuclear spin-lattice relaxation rate 1/T11/T_1 as a function of the c-axis external field (HcH_c) and temperature (TT). We developed contour plots of McM_c and ScS_c on the HcH_c - TT phase diagram, and observed the strong divergence of ScS_c at the CEP. The critical exponents of McM_c and ScS_c near the CEP are estimated, and found to be close to the universal properties of a three-dimensional (3-D) Ising model. We indicate that the critical phenomena at the itinerant-electron MM CEP in UCoAl have a common feature as a gas-liquid transition.Comment: 8 Pages, 14 figure

    Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})

    Get PDF
    In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500), f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these solutions, we determine partial widths for scalar-isoscalar states decaying into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and corresponding decay couplings.Comment: Some typos were correcte

    Role of the exchange and correlation potential into calculating the x-ray absorption spectra of half-metallic alloys: the case of Mn and Cu K-edge XANES in Cu2_2MnM (M = Al, Sn, In) Heusler alloys

    Get PDF
    This work reports a theoretical study of the x-ray absorption near-edge structure spectra at both the Cu and the Mn K-edge in several Cu2_2MnM (M= Al, Sn and In) Heusler alloys. Our results show that {\it ab-initio} single-channel multiple-scattering calculations are able of reproducing the experimental spectra. Moreover, an extensive discussion is presented concerning the role of the final state potential needed to reproduce the experimental data of these half-metallic alloys. In particular, the effects of the cluster-size and of the exchange and correlation potential needed in reproducing all the experimental XANES features are discussed.Comment: 15 pages, 5 figure

    Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: a combined thermodynamic and NMR study

    Get PDF
    The nature of the tetragonal-to-orthorhombic structural transition at Ts90T_s\approx90 K in single crystalline FeSe is studied using shear-modulus, heat-capacity, magnetization and NMR measurements. The transition is shown to be accompanied by a large shear-modulus softening, which is practically identical to that of underdoped Ba(Fe,Co)2_2As2_2, suggesting very similar strength of the electron-lattice coupling. On the other hand, a spin-fluctuation contribution to the spin-lattice relaxation rate is only observed below TsT_s. This indicates that the structural, or "nematic", phase transition in FeSe is not driven by magnetic fluctuations
    corecore