662 research outputs found
Magnetic Excitations in the Quasi-1D Ising-like Antiferromagnet TlCoCl
Neutron inelastic scattering measurements have been performed in order to
investigate the magnetic excitations in the quasi-1D Ising-like antiferromagnet
TlCoCl. We observed the magnetic excitation, which corresponds to the
spin-wave excitation continuum corresponding to the domain-wall pair excitation
in the 1D Ising-like antiferromagnet. According to the Ishimura-Shiba theory,
we analyzed the observed spin-wave excitation, and the exchange constant
and the anistropy were estimated as 14.7 meV and 0.14 in TlCoCl,
respectively.Comment: 2 pages, 3 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol.75 (2006) No.
Polarized Neutron Inelastic Scattering Study of the Anisotropic Magnetic Fluctuations in the Quasi-1D Ising-like Antiferromagnet TlCoCl
Polarized neutron inelastic scattering experiments have been carried out in
the quasi-1D Ising-like antiferromagnet TlCoCl. We observed the
longitudinal magnetic fluctuation for the spin-wave
excitation continuum, which has not been observed in the unpolarized neutron
inelastic scattering experiments of the quasi-1D Ising-like antiferromagnets
CsCoCl and TlCoCl so far, together with the transverse magnetic
fluctuation . We compared both obtained intensities of
and with the perturbation theory from
the pure Ising limit by Ishimura and Shiba, and a semi-quantitative agreement
was found.Comment: 5 pages, 5 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol. 75 (2006) No.
Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields
The dynamical structure factor of the S=1/2 bond-alternating spin chain with
a next-nearest-neighbor interaction in magnetic field is investigated using the
continued fraction method based on the Lanczos algorithm. When the plateau
exists on the magnetization curve, the longitudinal dynamical structure factor
shows a large intensity with a periodic dispersion relation, while the
transverse one shows a large intensity with an almost dispersionless mode. The
periodicity and the amplitude of the dispersion relation in the longitudinal
dynamical structure factor are sensitive to the coupling constants. The
dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is
also calculated in the strong interchain-coupling regime.
The dynamical structure factor shows gapless or gapful behavior depending on
the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of
Japan, vol. 69, no. 10, (2000
Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3
Inelastic neutron scattering profiles of spin waves in the dilute
quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have
been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin
Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J
mode. The Q dependence of the energy of this spin wave mode follows the
analytical prediction
omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by
Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure
The IntraCluster Medium: An Invariant Stellar IMF
Evidence supporting the hypothesis of an invariant stellar Initial Mass
Function is strong and varied. The intra-cluster medium in rich clusters of
galaxies is one of the few contrary locations where recent interpretations of
the chemical abundances have favoured an IMF that is biased towards massive
stars, compared to the `normal' IMF. This interpretation hinges upon the
neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of
the nucleosynthesis yields of Type II supernovae. We demonstrate here that when
one adopts yields determined empirically from observations of Galactic stars,
rather than the uncertain model yields, a self-consistent picture may be
obtained with an invariant stellar IMF, and about half of the iron in the ICM
being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure.
Accepted, ApJ Letter
Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study
We consider a lattice-gas model with an infinite range pairwise noncovex
interaction. It might be relevant, for example, for adsorption of alkaline
elements on W(112) and Mo(112). We study a competition between the effective
dipole-dipole and indirect interactions. The resulting ground state phase
diagrams are analysed (numerically) in detail. We have found that for some
model parameters the phase diagrams contain a region dominated by several
phases only with periods up to nine lattice constants. The remaining phase
diagrams reveal a complex structure of usually long periodic phases. We also
discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996),
in pres
Bloch oscillations of magnetic solitons in anisotropic spin-1/2 chains
We study the quantum dynamics of soliton-like domain walls in anisotropic
spin-1/2 chains in the presence of magnetic fields. In the absence of fields,
domain walls form a Bloch band of delocalized quantum states while a static
field applied along the easy axis localizes them into Wannier wave packets and
causes them to execute Bloch oscillations, i.e. the domain walls oscillate
along the chain with a finite Bloch frequency and amplitude. In the presence of
the field, the Bloch band, with a continuum of extended states, breaks up into
the Wannier-Zeeman ladder -- a discrete set of equally spaced energy levels. We
calculate the dynamical structure factor in the one-soliton sector at finite
frequency, wave vector, and temperature, and find sharp peaks at frequencies
which are integer multiples of the Bloch frequency. We further calculate the
uniform magnetic susceptibility and find that it too exhibits peaks at the
Bloch frequency. We identify several candidate materials where these Bloch
oscillations should be observable, for example, via neutron scattering
measurements. For the particular compound CoCl_2.2H_2O we estimate the Bloch
amplitude to be on the order of a few lattice constants, and the Bloch
frequency on the order of 100 GHz for magnetic fields in the Tesla range and at
temperatures of about 18 Kelvin.Comment: 31 single-spaced REVTeX pages, including 7 figures embedded with eps
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
The GRB 071112C: A Case Study of Different Mechanisms in X-ray and Optical Temporal Evolution
We present the study on GRB 071112C X-ray and optical light curves. In these
two wavelength ranges, we have found different temporal properties. The R-band
light curve showed an initial rise followed by a single power-law decay, while
the X-ray light curve was described by a single power-law decay plus a
flare-like feature. Our analysis shows that the observed temporal evolution
cannot be described by the external shock model in which the X-ray and optical
emission are produced by the same emission mechanism. No significant color
changes in multi-band light curves and a reasonable value of the initial
Lorentz factor ({\Gamma}0 = 275 \pm 20) in a uniform ISM support the afterglow
onset scenario as the correct interpretation for the early R-band rise. The
result suggests the optical flux is dominated by afterglow. Our further
investigations show that the X-ray flux could be created by an additional
feature related to energy injection and X-ray afterglow. Different theoretical
interpretations indicate the additional feature in X-ray can be explained by
either late internal dissipation or local inverse-Compton scattering in the
external shock.Comment: 20 pages, 3 figures, accepted for publication in Ap
A neutron scattering study of two-magnon states in the quantum magnet copper nitrate
We report measurements of the two-magnon states in a dimerized
antiferromagnetic chain material, copper nitrate (Cu(NO3)2*2.5D2O). Using
inelastic neutron scattering we have measured the one and two magnon excitation
spectra in a large single crystal. The data are in excellent agreement with a
perturbative expansion of the alternating Heisenberg Hamiltonian from the
strongly dimerized limit. The expansion predicts a two-magnon bound state for q
~ (2n+1)pi*d which is consistent with the neutron scattering data.Comment: 11 pages of revtex style with 6 figures include
- …
