1,535 research outputs found
Imprints of the super-Eddington accretion on the quasar clustering
Super-Eddington mass accretion has been suggested as an efficient mechanism
to grow supermassive black holes (SMBHs). We investigate the imprint left by
the radiative efficiency of the super-Eddington accretion process on the
clustering of quasars using a new semi-analytic model of galaxy and quasar
formation based on large-volume cosmological -body simulations. Our model
includes a simple model for the radiative efficiency of a quasar, which
imitates the effect of photon trapping for a high mass accretion rate. We find
that the model of radiative efficiency affects the relation between the quasar
luminosity and the quasar host halo mass. The quasar host halo mass has only
weak dependence on quasar luminosity when there is no upper limit for quasar
luminosity. On the other hand, it has significant dependence on quasar
luminosity when the quasar luminosity is limited by its Eddington luminosity.
In the latter case, the quasar bias also depends on the quasar luminosity, and
the quasar bias of bright quasars is in agreement with observations. Our
results suggest that the quasar clustering studies can provide a constraint on
the accretion disc model.Comment: 6 pages, 4 figures, to appear in MNRAS Letter
In Vivo Imaging of Transplanted Islets with ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 by Targeting GLP-1 Receptor
Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys^(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys^(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys^(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After ^(64)Cu labeling, biodistribution studies and microPET imaging of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human
Change of Electronic Structure Induced by Magnetic Transitions in CeBi
The temperature dependence of the electronic structure of CeBi arising from
two types of antiferromagnetic transitions based on optical conductivity
() was observed. The spectrum continuously and
discontinuously changes at 25 and 11 K, respectively. Between these
temperatures, two peaks in the spectrum rapidly shift to the opposite energy
sides as the temperature changes. Through a comparison with the band
calculation as well as with the theoretical spectrum, this
peak shift was explained by the energy shift of the Bi band due to the
mixing effect between the Ce and Bi states. The single-layer
antiferromagnetic () transition from the paramagnetic state was concluded
to be of the second order. The marked changes in the spectrum
at 11 K, however, indicated the change in the electronic structure was due to a
first-order-like magnetic transition from a single-layer to a double-layer
() antiferromagnetic phase.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004
Formulation and constraints on decaying dark matter with finite mass daughter particles
Decaying dark matter cosmological models have been proposed to remedy the
overproduction problem at small scales in the standard cold dark matter
paradigm. We consider a decaying dark matter model in which one CDM mother
particle decays into two daughter particles, with arbitrary masses. A complete
set of Boltzmann equations of dark matter particles is derived which is
necessary to calculate the evolutions of their energy densities and their
density perturbations. By comparing the expansion history of the universe in
this model and the free-streaming scale of daughter particles with astronomical
observational data, we give constraints on the lifetime of the mother particle,
, and the mass ratio between the daughter and the mother particles
. From the distance to the last scattering surface of the
cosmic microwave background, we obtain 30 Gyr in the massless
limit of daughter particles and, on the other hand, we obtain
0.97 in the limit . The free-streaming constraint
tightens the bound on the mass ratio as for .Comment: 20 pages, 7 figure
Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory
The band calculation scheme for electron compounds is developed on the
basis of the dynamical mean field theory (DMFT) and the LMTO method. The
auxiliary impurity problem is solved by a method named as NCAv', which
includes the correct exchange process of the virtual
excitation as the vertex correction to the non-crossing approximation (NCA) for
the fluctuation. This method leads to the correct magnitude
of the Kondo temperature, , and makes it possible to carry out
quantitative DMFT calculation including the crystalline field (CF) and the
spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra
are also calculated to estimate . It is applied to Ce metal and CeSb
at T=300 K as the first step. In Ce metal, the hybridization intensity (HI)
just below the Fermi energy is reduced in the DMFT band. The photo-emission
spectra (PES) have a conspicuous SO side peak, similar to that of experiments.
is estimated to be about 70 K in -Ce, while to be about
1700 K in -Ce. In CeSb, the double-peak-like structure of PES is
reproduced. In addition, which is not so low is obtained because HI
is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure
- …
