466 research outputs found
Resonance trapping and saturation of decay widths
Resonance trapping appears in open many-particle quantum systems at high
level density when the coupling to the continuum of decay channels reaches a
critical strength. Here a reorganization of the system takes place and a
separation of different time scales appears. We investigate it under the
influence of additional weakly coupled channels as well as by taking into
account the real part of the coupling term between system and continuum. We
observe a saturation of the mean width of the trapped states. Also the decay
rates saturate as a function of the coupling strength. The mechanism of the
saturation is studied in detail. In any case, the critical region of
reorganization is enlarged. When the transmission coefficients for the
different channels are different, the width distribution is broadened as
compared to a chi_K^2 distribution where K is the number of channels. Resonance
trapping takes place before the broad state overlaps regions beyond the
extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.
Dynamics of quantum systems
A relation between the eigenvalues of an effective Hamilton operator and the
poles of the matrix is derived which holds for isolated as well as for
overlapping resonance states. The system may be a many-particle quantum system
with two-body forces between the constituents or it may be a quantum billiard
without any two-body forces. Avoided crossings of discrete states as well as of
resonance states are traced back to the existence of branch points in the
complex plane. Under certain conditions, these branch points appear as double
poles of the matrix. They influence the dynamics of open as well as of
closed quantum systems. The dynamics of the two-level system is studied in
detail analytically as well as numerically.Comment: 21 pages 7 figure
Phase transitions in open quantum systems
We consider the behaviour of open quantum systems in dependence on the
coupling to one decay channel by introducing the coupling parameter
being proportional to the average degree of overlapping. Under critical
conditions, a reorganization of the spectrum takes place which creates a
bifurcation of the time scales with respect to the lifetimes of the resonance
states. We derive analytically the conditions under which the reorganization
process can be understood as a second-order phase transition and illustrate our
results by numerical investigations. The conditions are fulfilled e.g. for a
picket fence with equal coupling of the states to the continuum. Energy
dependencies within the system are included. We consider also the generic case
of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the
reorganization of the spectrum occurs at the critical value of
the control parameter globally over the whole energy range of the spectrum. All
states act cooperatively.Comment: 28 pages, 22 Postscript figure
Kharkiv incoherent scatter facility
The structure, parameters and operating modes of the incoherent scatter radar of the Institute of Ionosphere, Kharkiv are presented. Some results of the ionosphere research obtained by this facility are shown.Наведено структуру, параметри і режими роботи радара некогерентного розсіяння Інституту іоносфери (м. Харків). Показано деякі результати спостережень іоносфери за допомогою цього обладнання
Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths
A phenomenological schematic model of multipole giant resonances (GR) is
considered which treats the external interaction via common decay channels on
the same footing as the coherent part of the internal residual interaction. The
damping due to the coupling to the sea of complicated states is neglected. As a
result, the formation of GR is governed by the interplay and competition of two
kinds of collectivity, the internal and the external one. The mixing of the
doorway components of a GR due to the external interaction influences
significantly their multipole strengths, widths and positions in energy. In
particular, a narrow resonance state with an appreciable multipole strength is
formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997
New Discrete Basis for Nuclear Structure Studies
A complete discrete set of spherical single-particle wave functions for
studies of weakly-bound many-body systems is proposed. The new basis is
obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the
new wave functions decay exponentially at large distances. Using the new basis,
characteristics of weakly-bound orbitals are analyzed and the ground state
properties of some spherical doubly-magic nuclei are studied. The basis of the
transformed harmonic oscillator is a significant improvement over the harmonic
oscillator basis, especially in studies of exotic nuclei where the coupling to
the particle continuum is important.Comment: 13 pages, RevTex, 6 p.s. figures, submitted to Phys. Rev.
Collectivity Embedded in Complex Spectra of Finite Interacting Fermi Systems: Nuclear Example
The mechanism of collectivity coexisting with chaos in a finite system of
strongly interacting fermions is investigated. The complex spectra are
represented in the basis of two-particle two-hole states describing the nuclear
double-charge exchange modes in Ca. An example of
excitations shows that the residual interaction, which generically implies
chaotic behavior, under certain specific and well identified conditions may
create strong transitions, even much stronger than those corresponding to a
pure mean-field picture. Such an effect results from correlations among the
off-diagonal matrix elements, is connected with locally reduced density of
states and a local minimum in the information entropy.Comment: 16 pages, LaTeX2e, REVTeX, 8 PostScript figures, to appear in
Physical Review
Patterns of infectious complications in acute myeloid leukemia and myelodysplastic syndromes patients treated with 10-day decitabine regimen
Interfering resonances in a quantum billiard
We present a method for numerically obtaining the positions, widths and
wavefunctions of resonance states in a two dimensional billiard connected to a
waveguide. For a rectangular billiard, we study the dynamics of three resonance
poles lying separated from the other ones. As a function of increasing coupling
strength between the waveguide and the billiard two of the states become
trapped while the width of the third one continues to increase for all coupling
strengths. This behavior of the resonance poles is reflected in the time delay
function which can be studied experimentally.Comment: 2 pages, 3 figure
- …
