37,185 research outputs found

    Behaviours of natural organic matter in membrane filtration for surface water treatment : a review

    Get PDF
    Membrane application in surface water treatment provides many advantages over conventional treatment. However, this effort is hampered by the fouling issue, which restricts its widespread application due to increases in hydraulic resistances, operational and maintenance costs, deterioration of productivity and frequency of membrane regeneration problems. This paper discusses natural organic matter (NOM) and its components as the major membrane foulants that occur during the water filtration process, possible fouling mechanisms relating to reversible and irreversible of NOM fouling, current techniques used to characterize fouling mechanisms and methods to control fouling. Feed properties, membrane characteristics, operational conditions and solution chemistry were also found to strongly influence the nature and extent of NOM fouling. Findings of such studies are highlighted. The understanding of the combined roles of controlling factors and the methods used is very important in order to choose and optimize the best technique and conditions during surface water treatment. The future potential of membrane application for NOM removal is also discussed

    Leptonic Pion Decay And Physics Beyond The Electroweak Standard Model

    Full text link
    The ratio of branching ratios in leptonic pion decay Rπ(Γ(πeνe))/(Γ(πμνμ))R_{\pi} \equiv (\Gamma(\pi^- \to e \nu_e))/(\Gamma(\pi^- \to \mu \nu_\mu)) is a powerfully sensitive probe of new interactions beyond the electroweak standard model. This is due to the chirality suppression of the standard model amplitude for the decay, which results in a precise prediction for the ratio, and suppressed amplitudes for new contributions to interfere with. We calculate, including QCD corrections, the contributions to RπR_{\pi} arising from a broad selection of standard model extensions to which it is sensitive, including: R-parity violating interactions in supersymmetric theories, theories with light (electroweak scale) leptoquark degrees of freedom, non-minimal models of extra doublet Higgs bosons, models in which the quarks and leptons are composite both with and without supersymmetry, and models with strong TeV scale gravitational interactions. Comparing with existing measurements of RπR_{\pi} we provide limits on each of these classes of models; our calculations also represent state of the art theoretical benchmarks against which the results from the upcoming round of leptonic pion decay experiments may be compared.Comment: 31 pages, 3 figure

    New Algebraic Formulation of Density Functional Calculation

    Full text link
    This article addresses a fundamental problem faced by the ab initio community: the lack of an effective formalism for the rapid exploration and exchange of new methods. To rectify this, we introduce a novel, basis-set independent, matrix-based formulation of generalized density functional theories which reduces the development, implementation, and dissemination of new ab initio techniques to the derivation and transcription of a few lines of algebra. This new framework enables us to concisely demystify the inner workings of fully functional, highly efficient modern ab initio codes and to give complete instructions for the construction of such for calculations employing arbitrary basis sets. Within this framework, we also discuss in full detail a variety of leading-edge ab initio techniques, minimization algorithms, and highly efficient computational kernels for use with scalar as well as shared and distributed-memory supercomputer architectures

    Heavy Holographic Exotics: Tetraquarks as Efimov States

    Get PDF
    We provide a holographic description of non-strange multiquark exotics as compact topological molecules by binding heavy-light mesons to a tunneling configuration in D8-D8ˉ\bar 8 that is homotopic to the vacuum state with fixed Chern-Simons number. In the tunneling process, the heavy-light mesons transmute to fermions. Their binding is generic and arises from a trade-off between the dipole attraction induced by the Chern-Simons term and the U(1) fermionic repulsion. In the heavy quark limit, the open-flavor tetraquark exotics QQqˉqˉQQ\bar q\bar q and QˉQˉqq\bar Q\bar Q qq, emerge as bound Efimov states in a degenerate multiplet IJπ=(00+,01+)IJ^\pi=(00^+ , 01^+) with opposite intrinsic Chern-Simons numbers ±12\pm \frac 12. The hidden-flavor tetraquark exotics such as QQˉqqˉQ\bar Q q\bar q, QQQˉqˉQQ\bar Q\bar q and QQQˉQˉQQ\bar Q\bar Q as compact topological molecules are unbound. Other exotics are also discussed.Comment: 16 pages, 13 figure
    corecore