133 research outputs found
HPV prevalence and genetic predisposition to cervical cancer in Saudi Arabia
BACKGROUND: Cervical cancer incidence is low in Saudi Arabian women, suggesting low prevalence to HPV infection due to environmental, cultural and genetic differences. Therefore, we investigated HPV prevalence and genotype distribution in cervical cancer as well as the association with 9 genetic single nucleotide polymorphisms (SNPs): CDKN1A (p21) C31A, TP53 C72G, ATM G1853A, HDM2 promoter T309G, HDM2 A110G, LIG4 A591G, XRCC1 G399A, XRCC3 C241T and TGFβ1 T10C, presumed to predispose to cancer. METHODS: One hundred cervical cancer patients (90 squamous cell carcinoma and 10 adenocarcinoma) and 100 age/sex-matched controls were enrolled. SNPs were genotyped by direct sequencing and HPV was detected and typed in tumors using the HPV Linear Array Test. RESULTS: Eighty-two cases (82%) were positive for HPV sequences. Seven HPV genotypes were present as single infections (16, 18, 31, 45, 56, 59, 73) and five double infections (16/18, 16/39, 16/70, 35/52, 45/59) were detected. Most common genotypes were HPV-16 (71%), 31 (7%), and 18, 45, 73 (4% each). Only XRCC1 SNP was significantly associated with cervical cancer (P=0.02, OD=1.69; 95% CI= 1.06–2.66). However, nested analysis revealed a preponderance of HPV-positivity in patients harboring the presumed risk allele TP53 G (P=0.06). Both XRCC1 and TP53 SNPs tended to deviate from Hardy-Weinberg equilibrium (HWE; P=0.03-0.07). CONCLUSIONS: HPV prevalence (82%) in cervical cancer is at the lower range of the worldwide estimation (85 - 99%). While XRCC1 G399A was significantly associated with cervical cancer, TP53 G72C showed borderline association only in HPV-positive patients. Deviation from HWE in HPV-positive patients indicates co-selection, hence implicating the combination of HPV and SNPs in cancer predisposition. Thus, SNPs could be more relevant biomarkers of susceptibility to cervical cancer when associated with HPV infection
Past, Present and Future Perspectives on the Management of Endometrial Cancer— A Comprehensive Review
Bilateral Ectopic Hypoplastic Uteri Attached to Bilateral Pelvic Sidewalls in a 21-Year-Old Patient with Primary Amenorrhea: The First Published Report
Müllerian duct anomalies (MDAs) encompass a group of anatomical malformations resulting from defective development, fusion, migration, or resorption of Müllerian (paramesonephric) ducts during embryonic life. Herein, we report the first case of an exceedingly uncommon MDA (bilateral ectopic hypoplastic uteri attached to bilateral pelvic sidewalls) in a 21-year-old woman who was referred to our tertiary care center as a case of primary amenorrhea for workup and further management
Cytoreductive Surgery plus Hyperthermic Intraperitoneal Chemotherapy for Management of Peritoneal Sarcomatosis: A Preliminary Single-Center Experience from Saudi Arabia
Aim. To report our preliminary single-center experience with cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) for management of peritoneal sarcomatosis (PS). Methods. Eleven patients were retrospectively analyzed for perioperative details. Results. Cytoreduction completeness (CC-0/1) was achieved in all patients with median peritoneal cancer index (PCI) of 14 ± 8.9 (range: 3–29). Combination cisplatin + doxorubicin HIPEC chemotherapy was used in 6 patients. Five patients received intraoperative radiation therapy (IORT). The median operative time, estimated blood loss, and hospital stay were 8 ± 1.4 hours (range: 6–10), 1000 ± 250 mL (range: 700–3850), and 11 ± 2.4 days (range: 7–15), respectively. Major postoperative Clavien-Dindo grade III/IV complications occurred in 1 patient and none developed HIPEC chemotherapy-related toxicities. The median overall survival (OS) and disease-free survival (DFS) after CRS + HIPEC were 28.3 ± 3.2 and 18.0 ± 4.0 months, respectively. The median follow-up time was 12 months (range: 6–33). Univariate analysis of several prognostic factors (age, gender, PS presentation/pathology, CC, PCI, HIPEC chemotherapy, and IORT) did not demonstrate statistically significant differences of OS and DFS. Conclusion. CRS + HIPEC appear to be feasible, safe, and offer survival oncological benefits. However, definitive conclusions cannot be deduced
The effect of alpha-lipoic acid supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in individuals with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials
This systematic review and meta-analysis aimed to examine the effect of the antioxidant alpha-lipoic acid (ALA) on various cardiometabolic risk factors and hormonal parameters in patients with polycystic ovary syndrome (PCOS). We searched PubMed, EMBASE, SCOPUS, Cochrane Library, and Web of Science databases without language restrictions until May 2023 to find randomized controlled trials (RCTs) that assessed the impact of ALA supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in women with PCOS. Outcomes were summarized using the standardized mean difference (SMD) and 95% confidence interval (CI) in a random-effects model. An I2 statistic of >60% established significant between-study heterogeneity. The overall certainty of the evidence for each outcome was determined using the grading of recommendations, assessment, development, and evaluations system. Seven RCTs met the inclusion criteria. The ALA group had significant reductions in fasting blood sugar (fasting blood sugar (FBS), n=7 RCTs, SMD, −0.60; 95% CI, −1.10 to −0.10; I2=63.54%, moderate certainty of evidence) and homeostatic model assessment for insulin resistance (homeostatic model assessment of insulin resistance (HOMA-IR), n=4 RCTs, SMD, −2.03; 95% CI, −3.85 to −0.20; I2=96.32%, low certainty of evidence) compared with the control group. However, significant differences were observed between the groups in body mass index, insulin, estrogen, follicle-stimulating hormone, luteinizing hormone, testosterone, low-density lipoprotein, high-density lipoprotein, triglyceride, total cholesterol, malondialdehyde, or total antioxidant capacity profiles. ALA supplementation improves FBS and HOMA-IR levels in women with PCOS. ALA consumption is an effective complementary therapy for the management of women with PCOS
Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021
Background: Anaemia is a major health problem worldwide. Global estimates of anaemia burden are crucial for developing appropriate interventions to meet current international targets for disease mitigation. We describe the prevalence, years lived with disability, and trends of anaemia and its underlying causes in 204 countries and territories. Methods: We estimated population-level distributions of haemoglobin concentration by age and sex for each location from 1990 to 2021. We then calculated anaemia burden by severity and associated years lived with disability (YLDs). With data on prevalence of the causes of anaemia and associated cause-specific shifts in haemoglobin concentrations, we modelled the proportion of anaemia attributed to 37 underlying causes for all locations, years, and demographics in the Global Burden of Disease Study 2021. Findings: In 2021, the global prevalence of anaemia across all ages was 24·3% (95% uncertainty interval [UI] 23·9–24·7), corresponding to 1·92 billion (1·89–1·95) prevalent cases, compared with a prevalence of 28·2% (27·8–28·5) and 1·50 billion (1·48–1·52) prevalent cases in 1990. Large variations were observed in anaemia burden by age, sex, and geography, with children younger than 5 years, women, and countries in sub-Saharan Africa and south Asia being particularly affected. Anaemia caused 52·0 million (35·1–75·1) YLDs in 2021, and the YLD rate due to anaemia declined with increasing Socio-demographic Index. The most common causes of anaemia YLDs in 2021 were dietary iron deficiency (cause-specific anaemia YLD rate per 100 000 population: 422·4 [95% UI 286·1–612·9]), haemoglobinopathies and haemolytic anaemias (89·0 [58·2–123·7]), and other neglected tropical diseases (36·3 [24·4–52·8]), collectively accounting for 84·7% (84·1–85·2) of anaemia YLDs. Interpretation: Anaemia remains a substantial global health challenge, with persistent disparities according to age, sex, and geography. Estimates of cause-specific anaemia burden can be used to design locally relevant health interventions aimed at improving anaemia management and prevention. Funding: Bill & Melinda Gates Foundation
Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019
BACKGROUND: The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS: We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS: In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION: The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. FUNDING: The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding: Bill & Melinda Gates Foundation
- …
