81 research outputs found
Entanglement entropy, black holes and holography
We observe that the entanglement entropy resulting from tracing over a
subregion of an initially pure state can grow faster than the surface area of
the subregion (indeed, proportional to the volume), in contrast to examples
studied previously. The pure states with this property have long-range
correlations between interior and exterior modes and are constructed by
purification of the desired density matrix. We show that imposing a
no-gravitational collapse condition on the pure state is sufficient to exclude
faster than area law entropy scaling. This observation leads to an
interpretation of holography as an upper bound on the realizable entropy
(entanglement or von Neumann) of a region, rather than on the dimension of its
Hilbert space.Comment: 4 pages, revte
On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames
Three new classes (II-IV) of solutions of the vacuum low energy effective
string theory in four dimensions are derived. Wormhole solutions are
investigated in those solutions including the class I case both in the Einstein
and in the Jordan (string) frame. It turns out that, of the eight classes of
solutions investigated (four in the Einstein frame and four in the
corresponding string frame), massive Lorentzian traversable wormholes exist in
five classes. Nontrivial massless limit exists only in class I Einstein frame
solution while none at all exists in the string frame. An investigation of test
scalar charge motion in the class I solution in the two frames is carried out
by using the Plebanski-Sawicki theorem. A curious consequence is that the
motion around the extremal zero (Keplerian) mass configuration leads, as a
result of scalar-scalar interaction, to a new hypothetical "mass" that confines
test scalar charges in bound orbits, but does not interact with neutral test
particles.Comment: 18 page
Synergistic warm inflation
We consider an alternative warm inflationary scenario in which scalar
fields coupled to a dissipative matter fluid cooperate to produce power--law
inflation. The scalar fields are driven by an exponential potential and the
bulk dissipative pressure coefficient is linear in the expansion rate. We find
that the entropy of the fluid attains its asymptotic value in a characteristic
time proportional to the square of the number of fields. This scenario remains
nearly isothermal along the inflationary stage. The perturbations in energy
density and entropy are studied in the long--wavelength regime and seen to grow
roughly as the square of the scale factor. They are shown to be compatible with
COBE measurements of the fluctuations in temperature of the CMB.Comment: 13 pages, Revtex 3 To be published in Physical Review
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
We present cosmological perturbations of kinetic components based on
relativistic Boltzmann equations in the context of generalized gravity
theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with the gravity, an arbitrary number of mutually interacting
hydrodynamic fluids, and components described by the relativistic Boltzmann
equations like massive/massless collisionless particles and the photon with the
accompanying polarizations. We also include direct interactions among fluids
and fields. The background FLRW model includes the general spatial curvature
and the cosmological constant. We consider three different types of
perturbations, and all the scalar-type perturbation equations are arranged in a
gauge-ready form so that one can implement easily the convenient gauge
conditions depending on the situation. In the numerical calculation of the
Boltzmann equations we have implemented four different gauge conditions in a
gauge-ready manner where two of them are new. By comparing solutions solved
separately in different gauge conditions we can naturally check the numerical
accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
Hydrodynamics and Flow
In this lecture note, we present several topics on relativistic hydrodynamics
and its application to relativistic heavy ion collisions. In the first part we
give a brief introduction to relativistic hydrodynamics in the context of heavy
ion collisions. In the second part we present the formalism and some
fundamental aspects of relativistic ideal and viscous hydrodynamics. In the
third part, we start with some basic checks of the fundamental observables
followed by discussion of collective flow, in particular elliptic flow, which
is one of the most exciting phenomenon in heavy ion collisions at relativistic
energies. Next we discuss how to formulate the hydrodynamic model to describe
dynamics of heavy ion collisions. Finally, we conclude the third part of the
lecture note by showing some results from ideal hydrodynamic calculations and
by comparing them with the experimental data.Comment: 40 pages, 35 figures; lecture given at the QGP Winter School, Jaipur,
India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic
Adiabatic perturbations in pre big bang models: matching conditions and scale invariance
At low energy, the four-dimensional effective action of the ekpyrotic model
of the universe is equivalent to a slightly modified version of the pre big
bang model. We discuss cosmological perturbations in these models. In
particular we address the issue of matching the perturbations from a collapsing
to an expanding phase in full generality. We show that, generically, one
obtains for the spectrum of scalar perturbations in the original pre big
model (with vanishing potential). When an exponential potential for the dilaton
is included, a scale invariant spectrum () of adiabatic scalar
perturbations is produced under very generic matching conditions, both in a
modified pre big bang and ekpyrotic scenario. We also derive general results
valid for power law scale factors matched to a radiation dominated era.Comment: 11 pages, 1 figure, revised version with small corrections to match
version in print. Results and conclusions unchange
Four decades of water recycling in Atlantis (Western Cape, South Africa): Past, present and future
The primary aquifer at Atlantis (Western Cape, South Africa) is ideally suited for water supply and the indirect recycling of urban stormwater runoff and treated domestic wastewater for potable purposes. The relatively thin, sloping aquifer requires careful management of the artificial recharge and abstraction for balancing water levels. Water quality management is a further key issue at Atlantis for ensuring the highest quality potable water. Groundwater quality varies from point to point in the aquifer, while urban runoff and wastewater qualities vary greatly. The layout of the town allows for the separation of stormwater from the residential and industrial areas as well as separate treatment of domestic and industrial wastewater. This permits safe artificial recharge of the various water quality portions at different points in the aquifer, either for recycling or for preventing seawater intrusion. All of the management actions are dependent on detailed data collection and this paper describes the various parts of the system, describes the data collection activities, and provides results of the monitoring and aquifer responses over the past four decades. Challenges related to iron fouling of production boreholes are also described. The presence of emerging contaminants was studied in 2008 but requires follow-up research for establishing the extent of any possible threat to water recycling. In order to address the shortcomings of the system a risk management plan based on the Hazard Analysis and Critical Control Points approach was developed. Lessons learnt from the Atlantis experience can be transferred to other potential sites for establishment of similar systems in arid and semi-arid areas of South Africa and the African continent.Keywords: Atlantis, managed aquifer recharge, water recycling, groundwater, stormwater, wastewater, monitorin
Perturbations of brane worlds
We consider cosmological models where the universe, governed by Einstein's
equations, is a piece of a five dimensional double-sided anti-de Sitter
spacetime (that is, a "-symmetric bulk") with matter confined to its four
dimensional Robertson-Walker boundary or "brane". We study the perturbations of
such models. We use conformally minkowskian coordinates to disentangle the
contributions of the bulk gravitons and of the motion of the brane. We find the
restrictions put on the bulk gravitons when matter on the brane is taken to be
a scalar field and we solve in that case the brane perturbation equations.Comment: 19 pages, no figures, RevTex, version to appear in Phys.Rev.D; minor
changes in chap.V, polarisation tensor at page 13 correcte
Inflation and Braneworlds: Degeneracies and Consistencies
Scalar and tensor perturbations arising in an inflationary braneworld
scenario driven by a single scalar field are considered, where the bulk on
either side of the brane corresponds to Anti-de Sitter spaces with different
cosmological constants. A consistency relation between the two spectra is
derived and found to have an identical form to that arising in standard
single-field inflation based on conventional Einstein gravity. The dS/CFT
correspondence may provide further insight into the origin of this degeneracy.
Possible ways of lifting such a degeneracy are discussed.Comment: 10 page
- …
