1,014 research outputs found

    Perceiving Mass in Mixed Reality through Pseudo-Haptic Rendering of Newton's Third Law

    Get PDF
    In mixed reality, real objects can be used to interact with virtual objects. However, unlike in the real world, real objects do not encounter any opposite reaction force when pushing against virtual objects. The lack of reaction force during manipulation prevents users from perceiving the mass of virtual objects. Although this could be addressed by equipping real objects with force-feedback devices, such a solution remains complex and impractical.In this work, we present a technique to produce an illusion of mass without any active force-feedback mechanism. This is achieved by simulating the effects of this reaction force in a purely visual way. A first study demonstrates that our technique indeed allows users to differentiate light virtual objects from heavy virtual objects. In addition, it shows that the illusion is immediately effective, with no prior training. In a second study, we measure the lowest mass difference (JND) that can be perceived with this technique. The effectiveness and ease of implementation of our solution provides an opportunity to enhance mixed reality interaction at no additional cost

    Inverse transport for the verification of the Comprehensive Nuclear Test Ban Treaty

    Get PDF
    An international monitoring system is being built as a verification tool for the Comprehensive Test Ban Treaty. Forty stations will measure on a worldwide daily basis the concentration of radioactive noble gases. The paper introduces, by handling preliminary real data, a new approach of backtracking for the identification of sources of passive tracers after positive measurements. When several measurements are available the ambiguity about possible sources is reduced significantly. The approach is validated against ETEX data. A distinction is made between adjoint and inverse transport shown to be, indeed, different though equivalent ideas. As an interesting side result it is shown that, in the passive tracer dispersion equation, the diffusion stemming from a time symmetric turbulence is necessarily a self-adjoint operator, a result easily verified for the usual gradient closure, but more general

    Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation

    Get PDF
    International audienceThe measurement of atmospheric concentrations by a monitoring network is a promising tool for the identification of the widespread sources of trace species. The paper addresses the case of the species scattered linearly by a known meteorology. The question is classical: what can be said about the source from a set of measurements? Is it possible to guess from the values observed by the measurements that the source is spread close to the detectors, or that the tracer comes from a remote region? And, if the source was a point source, would it be possible to understand it by just considering these values? A part of the answers is a matter of practical sense: the resolution with which an emission can be retrieved will always be limited and probably lower for a remote region, even if the detectors and dispersion model are error free. The paper proposes a linear strategy of inference: to any set of values taken by the observed concentrations is associated linearly an estimate of the source. Doubled values lead to a doubled estimate. The method, based on adjoint techniques, is intended to optimise the resolution by quantifying, with the concept of illumination, which regions are well, poorly or not seen at all. The illumination tied to ordinary adjoint functions becomes excessive close to the detectors thus leading to inversion artefacts. This may be corrected by attributing each point of the space time domain a geometric and statistical weight. The adjoint functions are transformed. The choice of this renormalising function is constrained by an unambiguous entropic criterion preventing any overestimation of the available information that would lead to artefacts. It amounts to evenly distribute the information between the points organised with their weights as a "known domain". The theory is illustrated by calculations performed with the experimental source ETEX1

    Rebuilding sources of linear tracers after atmospheric concentration measurements

    Get PDF
    International audienceThe identification of widespread sources of passive tracers out of atmospheric concentration measurements has become an important challenge of modern meteorology. The paper proposes some mathematical tracks to address the reconstruction of the complex space-time geometry of the sources of linear tracers. The methods are based upon the use of retroplumes. The inverse problem is addressed in a deterministic non statistical frame. The information obtained by local measurements is spread by introducing the concept of illumination. The constraint that the source is non negative is also addressed. The experimental source ETEX1 is rebuilt in order to evaluate an impulse response of the algorithms

    Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation

    Get PDF
    The measurement of atmospheric concentrations by a monitoring network is a promising tool for the identification of the widespread sources of trace species. The paper addresses the case of the species scattered linearly by a known meteorology. The question is classical: what can be said about the source from a set of measurements? Is it possible to guess from the values observed by the measurements that the source is spread close to the detectors, or that the tracer comes from a remote region? And, if the source was a point source, would it be possible to understand it by just considering these values? A part of the answers is a matter of practical sense: the resolution with which an emission can be retrieved will always be limited and probably lower for a remote region, even if the detectors and dispersion model are error free. The paper proposes a linear strategy of inference: to any set of values taken by the observed concentrations is associated linearly an estimate of the source. Doubled values lead to a doubled estimate. The method, based on adjoint techniques, is intended to optimise the resolution by quantifying, with the concept of illumination, which regions are well, poorly or not seen at all. The illumination tied to ordinary adjoint functions becomes excessive close to the detectors thus leading to inversion artefacts. This may be corrected by attributing each point of the space time domain a geometric and statistical weight. The adjoint functions are transformed. The choice of this renormalising function is constrained by an unambiguous entropic criterion preventing any overestimation of the available information that would lead to artefacts. It amounts to evenly distribute the information between the points organised with their weights as a 'known domain'. The theory is illustrated by calculations performed with the experimental source ETEX1

    Emergence of a linear tracer source from air concentration measurements

    Get PDF
    International audienceThe measurement of atmospheric concentrations by a monitoring network is potentially a useful tool investigated for the identification of the widespread sources of trace species. The paper addresses inversion strategies using base functions multiplicatively deduced from the concentrations adjoint to the measurements. This follows the concept of illumination: the various regions are well, poorly or not seen at all. With ordinary adjoint functions the illumination becomes excessive close to the detectors. This may be corrected by attributing each point of the space time domain a geometric weight. After stating the statistical implications, the choice of this renormalising function is shown to be constrained by an unambiguous formal criterion. The expectable values of the measurements are distinguished from the measurement errors. The entropic nature of the criterion is explained; it amounts to evenly distribute the information between the points organised with their weights as a "known domain" describing the influence of the measurements. Finally the criterion is shown to coincide with the definition of the pure states of quantum statistics, and this interpretation is investigated to describe the influence of the measurement uncertainties on the quality of a source estimate. The theory is illustrated by calculations performed with the experimental source ETEX1

    Rebuilding sources of linear tracers after atmospheric concentration concentration

    Get PDF
    International audienceThe identification of widespread sources of passive tracers out of atmospheric concentration measurements has become an important challenge of modern meteorology. The paper proposes some mathematical tracks to address this reconstruction of the complex space-time geometry of the sources. The methods are based upon the use of retroplumes. The inverse problem is addressed in a deterministic non statistical frame. The information obtained by local measurements is spread by introducing the concept of illumination. The constraint that the source to be rebuilt is non negative is also addressed. The experimental source ETEX1 is rebuilt in order to evaluate an impulse response of the algorithms
    corecore