237 research outputs found
Fast and Accurate Mining of Correlated Heavy Hitters
The problem of mining Correlated Heavy Hitters (CHH) from a two-dimensional
data stream has been introduced recently, and a deterministic algorithm based
on the use of the Misra--Gries algorithm has been proposed by Lahiri et al. to
solve it. In this paper we present a new counter-based algorithm for tracking
CHHs, formally prove its error bounds and correctness and show, through
extensive experimental results, that our algorithm outperforms the Misra--Gries
based algorithm with regard to accuracy and speed whilst requiring
asymptotically much less space
Parallel and Distributed Frugal Tracking of a Quantile
In this paper, we deal with the problem of monitoring network latency. Indeed, latency is a key network metric related to both network performance and quality of service, since it directly impacts on the overall user’s experience. High latency leads to unacceptably slow response times of network services, and may increase network congestion and reduce the throughput, in turn disrupting communications and the user’s experience. A common approach to monitoring network latency takes into account the frequently skewed distribution of latency values, and therefore specific quantiles are monitored, such as the 95th, 98th, and 99th percentiles. We present a comparative analysis of the speed of convergence of the sequential FRUGAL-1U, FRUGAL-2U, and EASYQUANTILE algorithms
and the design and analysis of parallel, message-passing-based versions of these algorithms that can be used for monitoring network latency quickly and accurately. Distributed versions are also discussed. Extensive experimental results are provided and discussed as well
NEMO-Med: Optimization and Improvement of Scalability
The NEMO oceanic model is widely used among the climate community. It is used with different configurations in more than 50 research projects for both long and short-term simulations. Computational requirements of the model and its implementation limit the exploitation of the emerging computational infrastructure at peta and exascale. A deep revision and analysis of the model and its implementation were needed. The paper describes the performance evaluation of the model (v3.2), based on MPI parallelization, on the MareNostrum platform at the Barcelona Supercomputing Centre. The analysis of the scalability has been carried out taking into account different factors, such as the I/O system available on the platform, the domain decomposition of the model and the level of the parallelism. The analysis highlighted different bottlenecks due to the communication overhead. The code has been optimized reducing the communication weight within some frequently called functions and the parallelization has been improved introducing a second level of parallelism based on the OpenMP shared memory paradigm
Parallel mining of time-faded heavy hitters
In this paper we present PFDCMSS (Parallel Forward Decay Count-Min Space Saving) which, to the best of our knowledge, is the world first message-passing parallel algorithm for mining time-faded heavy hitters. The algorithm is a parallel version of the recently published FDCMSS (Forward Decay Count-Min Space Saving) sequential algorithm. We formally prove its correctness by showing that the underlying data structure, a sketch augmented with a Space Saving stream summary holding exactly two counters, is mergeable. Whilst mergeability of traditional sketches derives immediately from theory, we show that, instead, merging our augmented sketch is non trivial. Nonetheless, the resulting parallel algorithm is fast and simple to implement. The very large volumes of modern datasets in the context of Big Data present new challenges that current sequential algorithms can not cope with; on the contrary, parallel computing enables near real time processing of very large datasets, which are growing at an unprecedented scale. Our algorithm's implementation, taking advantage of the MPI (Message Passing Interface) library, is portable, reliable and provides cutting-edge performance. Extensive experimental results confirm that PFDCMSS retains the extreme accuracy and error bound provided by FDCMSS whilst providing excellent parallel scalability. Our contributions are three-fold: (i) we prove the non trivial mergeability of the augmented sketch used in the FDCMSS algorithm; (ii) we derive PFDCMSS, a novel message-passing parallel algorithm; (iii) we experimentally prove that PFDCMSS is extremely accurate and scalable, allowing near real time processing of large datasets. The result supports both casual users and seasoned, professional scientists working on expert and intelligent systems
Optimal Task Mapping for NEMO Model
The climate numerical models require a considerable amount of computing power. The modern parallel architectures provide the needed computing power to perform scientific simulations at acceptable resolutions. However, the efficiency of the exploitation of the parallel architectures by the climate models is often poor. Several factors influence the parallel efficiency such as the parallel overhead due to the communications among concurrent tasks, the memory contention among tasks on the same computing node, the load balancing and the tasks synchronization. The work here described aims at addressing two of the factors influencing the efficiency: the communications and the memory contention. The used approach is based on the optimal mapping of the tasks on the SMP nodes of a parallel cluster. The best mapping can heavily influence the time spent for communications between tasks belonging to the same node either to different nodes. Moreover, if we consider that each parallel task will allocate different amount of memory, the optimal tasks mapping can balance the total amount of main memory allocated on the same node and hence reduce the overall memory contention. The climate model taken into consideration is PELAGOS025 made by coupling the NEMO oceanic model with the BFM biogeochemical model. It has been used in a global configuration with a horizontal resolution of 0.25◦. Three different mapping strategies have been implemented, analyzed and compared with the standard allocation performed by the local scheduler. The parallel architecture used for the evaluation is an IBM iDataPlex with Intel SandyBridge processors located at the CMCC’s Supercomputing Center
- …
