1,150 research outputs found

    Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization

    Get PDF
    In a randomized multicenter study, the efficacies of two different GnRH agonists were compared with that of hCG for triggering final stages of oocyte maturation after ovarian hyperstimulation for in vitro fertilization. Ovarian stimulation was conducted by recombinant FSH (Puregon), and the GnRH antagonist ganirelix (Orgalutran) was coadministered for the prevention of a premature LH rise. Luteal support was provided by daily progestin administration. Frequent blood sampling was performed at midcycle in the first 47 eligible subjects included in the current study, who were randomized for a single dose of 0.2 mg triptorelin (n = 17), 0.5 mg leuprorelin (n = 15), or 10,000 IU hCG (n = 15). Serum concentrations of LH, FSH, E2, and progesterone (P) were assessed at variable intervals. LH peaked at 4 h after both triptorelin and leuprorelin administration, with median LH levels of 130 and 107 IU/liter (P < 0.001), respectively. LH levels returned to baseline after 24 h. Subjects receiving hCG showed peak levels of 240 IU/liter hCG 24 h after administration. A rise in FSH to 19 IU/liter (P < 0.001) was noted in both GnRH agonist groups 8 h after injection. Within 24 h the areas under the curve for LH and FSH were significantly higher (P < 0.001) in both GnRH agonist groups compared with that for hCG. E2 and P levels were similar for all groups up to the day of oocyte retrieval. Luteal phase areas under the curve for P and E2 were significantly elevated (P < 0.001) in the hCG group. The mean (+/-SD) numbers of oocytes retrieved were 9.8 +/- 5.4, 8.7 +/- 4.5, and 8.3 +/- 3.3; the percentages of metaphase II oocytes were 72%, 85%, and 86%; and fertilization rates were 61%, 62%, and 56% in the triptorelin, leuprorelin, and hCG group, respectively (P = NS for all three comparisons). These findings support the effective induction of final oocyte maturation in both GnRH agonist groups. In summary, after treatment with the GnRH antagonist ganirelix for the prevention of premature LH surges, triggering of final stages of oocyte maturation can be induced effectively by a single bolus injection of GnRH agonist, as demonstrated by the induced endogenous LH and FSH surge and the quality and fertilization rate of recovered oocytes. Moreover, corpus luteum formation is induced by GnRH agonists with luteal phase steroid levels closer to the physiological range compared with hCG. This more physiological approach for inducing oocyte maturation may represent a successful and safer alternative for in vitro fertilization patients undergoing ovarian hyperstimulation

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Epigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5′ untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.FRAXA Research FoundationHarvard Stem Cell Institute (seed grant)Stanley Medical Research InstituteNational Institute of Mental Health (U.S.) (grant #R33MH087896

    Astrocytes in Pathogenesis of ALS Disease and Potential Translation into Clinic

    Get PDF
    Astrocytes are the major cell population in the central nervous system (CNS) and play pivotal role in CNS homeostasis and functionality. Malfunction of astrocytes were implicated in multiple neurodegenerative diseases and disorders, including amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), brain stroke, Parkinson’s disease (PD), and Alzheimer disease (AD). These new insights led to the rationale that transplantation of healthy and functional human astrocytes could support survival of neurons and be of therapeutic value in treating neurodegenerative diseases. Here, we will mainly focus on the role of astrocytes in ALS disease, the major cell sources for generation of human astrocytes, or astrocyte like cells and show how multiple preclinical studies demonstrate the efficacy of these cells in animal models. In addition, we will cover immerging early stage clinical trials that are currently being conducted using human astrocytes or human astrocyte like cell population

    Is Mesh Becoming More Popular? Dilemmas in Urogynecology: A National Survey

    Get PDF
    The use of vaginal mesh in pelvic organ prolapse (POP) repair surgery has become more common in recent years. The purpose of the current study was to evaluate the common practice of Israeli urogynecologists, and to determine whether surgical practice has changed over the last two years. Methods. In 2009 and again in 2011, a survey was mailed to all urogynecologists affiliated with an academic institute in Israel. The survey consisted of 7 Likert-scale items and 3 open questions; the latter inquired about preferred type of surgery in three clinical scenarios. Results. Of 22 practitioners, 15 responded to the survey. The number of urogynecologists who reported using vaginal mesh for the repair of primary POP increased from 47 to 67% from 2009 to 2011. The number who would not use vaginal mesh in POP repair of elderly patients dropped from 60 to 3%. Finally, for the treatment of a 35-year-old patient with stage III uterine prolapse who desired to preserve fertility, 13% recommended the used vaginal mesh in 2009 compared with 47% in 2011. Conclusion. A survey of practitioners shows that the use of vaginal mesh for the repair of primary and recurrent pelvic organ prolapse has become more common among Israeli urogynecologists

    Prepatterning in the Stem Cell Compartment

    Get PDF
    The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate between functionally distinct substates that are primed to select distinct lineages when differentiation is induced

    Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling

    Get PDF
    With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as “the most complex thing in the universe.” The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed

    ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells

    Get PDF
    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications
    corecore