2,972 research outputs found
Experimental tests of reaction rate theory: Mu+H2 and Mu+D2
Copyright @ 1987 American Institute of Physics.Bimolecular rate constants for the thermal chemical reactions of muonium (Mu) with hydrogen and deuterium—Mu+H2→MuH+H and Mu+D2→MuD+D—over the temperature range 473–843 K are reported. The Arrhenius parameters and 1σ uncertainties for the H2 reaction are log A (cm3 molecule-1 s-1)=-9.605±0.074 and Ea =13.29±0.22 kcal mol-1, while for D2 the values are -9.67±0.12 and 14.73±0.40, respectively. These results are significantly more precise than those reported earlier by Garner et al. For the Mu reaction with H2 our results are in excellent agreement with the 3D quantum mechanical calculations of Schatz on the Liu–Siegbahn–Truhlar–Horowitz potential surface, but the data for both reactions compare less favorably with variational transition-state theory, particularly at the lower temperatures.NSERC (Canada) and the Petroleum Research Foundation of the Americal Chemical Society
Radio Planetary Nebulae in the Small Magellanic Cloud
We present ten new radio continuum (RC) detections at catalogued planetary
nebula (PN) positions in the Small Magellanic Cloud (SMC): SMPS6, LIN 41, LIN
142, SMP S13, SMP S14, SMP S16, J18, SMP S18, SMP S19 and SMP S22.
Additionally, six SMC radio PNe previously detected, LIN 45, SMP S11, SMPS17,
LIN321, LIN339 and SMPS24 are also investigated (re-observed) here making up a
population of 16 radio detections of catalogued PNe in the SMC. These 16 radio
detections represent ~15 % of the total catalogued PN population in the SMC. We
show that six of these objects have characteristics that suggest that they are
PN mimics: LIN 41, LIN 45, SMP S11, LIN 142, LIN 321 and LIN 339. We also
present our results for the surface brightness - PN radius relation
({\Sigma}-D) of the SMC radio PN population. These are consistent with previous
SMC and LMC PN measurements of the ({\Sigma}-D) relation.Comment: Accepted for publication in Astrophysics and Space Scienc
Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test
When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive
discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U
Surface Dynamics of the Cyclohexadienyl Radical Adsorbed on Silica Gel Investigated Using Avoided Level-Crossing Muon Spin Resonance
Radio Planetary Nebulae in the Magellanic Clouds
We present preliminary results of our deep Australia Telescope Compact Array
(ATCA) radio-continuum survey of the Magellanic Clouds Planetary Nebulae.Comment: 2 pages 1 figure, to appear in Planetary Nebulae an Eye to the Future
Proceedings IAU Symposium No. 28
Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)
Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gases—Mu+X2→MuX+X—are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(−0.095±0.020) kcal mol−1], constant over the temperature range of ∼200–400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council
A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK
The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery
<p>Background: The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.</p>
<p>Results: Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.</p>
<p>Conclusions: The H. contortus genome and transcriptome provides an essential platform for postgenomic research in this and other important strongylid parasites. </p>
Tumor surveillance by circulating microRNAs: a hypothesis
A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance
Insulin resistance, age and depression’s impact on cognition in middle-aged adults from the PREVENT cohort
International audienceBackground Alzheimer’s disease (AD), type 2 diabetes mellitus (characterised by insulin resistance) and depression are significant challenges facing public health. Research has demonstrated common comorbidities among these three conditions, typically focusing on two of them at a time. Objective The goal of this study, however, was to assess the inter-relationships between the three conditions, focusing on mid-life (defined as age 40–59) risk before the emergence of dementia caused by AD. Methods In the current study, we used cross-sectional data from 665 participants from the cohort study, PREVENT. Findings Using structural equation modelling, we showed that (1) insulin resistance predicts executive dysfunction in older but not younger adults in mid-life, that (2) insulin resistance predicts self-reported depression in both older and younger middle-aged adults and that (3) depression predicts deficits in visuospatial memory in older but not younger adults in mid-life. Conclusions Together, we demonstrate the inter-relations between three common non-communicable diseases in middle-aged adults. Clinical implications We emphasise the need for combined interventions and the use of resources to help adults in mid-life to modify risk factors for cognitive impairment, such as depression and diabetes
- …
