12 research outputs found
Istraživanja mogućnosti uporabe uzgojina u proizvodnji plastičnih dijelova na Kansas Polymer Research Center
Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route
Laminates From The Soy-Based Polyurethanes and Natural and Synthetic Fibers
ABSTRACTTwo polyols were prepared from soybean oil, one by epoxidation route and the other via hydroformylation. The polyol obtained by epoxidation has secondary groups and has a gel time of more than one hour when reacted with crude MDI to produce polyurethanes. Hydroformylated polyol has a gel time with MDI of several minutes and is more suitable for reinforced reaction injection molding (RRIM). The first group of polyurethanes had a glass transition close to 80 °C while the hydroformylated gave about 30 degrees lower Tg and comparable strength but higher elongation. Adding glycerin as the crosslinker could increase both Tg and strength. Two series of laminates were prepared using several types of glass fabric, carbon fiber, polyester, cotton and jute fabrics r as reinforcements. Hydroformylated polyol based polyurethane composites were softer, with lower Tg, modulus and strength. Composites with organic fibers were lighter and more flexible than the glass reinforced samples. For comparison glass reinforced epoxy and polyester were prepared and tested. Organic fibers gave lower stiffness and strength than the corresponding glass or carbon fiber. Although the neat polyester and epoxy resins had somewhat higher strengths than the polyurethanes from soybean oil, mainly due to the higher crosslinking density, the composites from the soy oil-based resin displayed comparable or better properties. Glass transition and mechanical properties of the soy-based polyurethanes was varied from about 70 °C to 140 °C with added crosslinkers. Processing time of the soy-polyurethanes resins was shorter than that of the other two resins.</jats:p
Phase Behavior and Properties of Polyurethane-PVC Blends and Fibers
Abstract
A polyester urethane elastomer is blended with rigid poly(vinyl chloride) (PVC) and the miscibility of the components studied over the entire range of compositions. The polyurethane elastomer was a block copolymer with a low degree of crystallinity, while PVC was practically amorphous. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) methods showed that polyester urethanes were partially miscible with PVC since two distinct glass transitions, which changed with the change of concentration of components, were observed. Although the PVC content was varied from 0–100%, the aim of the work was to examine if PVC at low concentrations would form fibrils in the urethane matrix and act as a reinforcing agent for the polyurethane elastomer. The morphology of the blends was studied by scanning electron microscopy and x-ray scattering. The blends were then spun into fibers to force the dispersed phase to elongate and form fibrils (draw ratio was about 100). A high degree of miscibility is obtained at low concentration of either of the components. The PVC phase in fibers spun from the blends have higher glass-transition temperature (Tg) than in isotropic blends, presumably due to increased orientation. No fibrillation of the rigid phase in the elastomeric matrix could be observed. The fibers displayed higher strengths but lower elongation at break than the isotropic blends of the same composition. Intermeshing morphology (at about 50/50 concentration) gave the lowest strengths.</jats:p
Polyurethane molded foams with high content of hyperbranched polyols from soybean oil
This paper examines the feasibility of using polyols from vegetable oils as base polyols (i.e. with 50% or more in a blend with petrochemical polyols) for flexible molded polyurethane foams. A series of hyperbranched (HB) polyols were synthesized by transesterification of hydroxy fatty acid methyl esters and different modifiers to control viscosity, hydrophilicity, molecular weight, and functionality. All HB polyols had hydroxyl numbers around 85 mg KOH/g, with the exception of one which was 105 mg KOH/g. When mixed with petrochemical polyols with OH numbers 35 and 28 mg KOH/g, the HB polyols acted primarily as high molecular weight crosslinkers that increased the stiffness of the polymeric network and the load-bearing properties but decreased the tensile strength, elongation, and tear strength. However, most of the foams met the targeted tensile and tear strength values while some of the foam formulations provided satisfactory elongation. The best mechanical properties were obtained from foams with phthalic anhydride-modified HB polyols. It was demonstrated that flexible molded foams with satisfactory properties can be obtained with 50% and 65% of HB soy polyols in a blend with PPO polyols. </jats:p
