74 research outputs found
Local and cluster critical dynamics of the 3d random-site Ising model
We present the results of Monte Carlo simulations for the critical dynamics
of the three-dimensional site-diluted quenched Ising model. Three different
dynamics are considered, these correspond to the local update Metropolis scheme
as well as to the Swendsen-Wang and Wolff cluster algorithms. The lattice sizes
of L=10-96 are analysed by a finite-size-scaling technique. The site dilution
concentration p=0.85 was chosen to minimize the correction-to-scaling effects.
We calculate numerical values of the dynamical critical exponents for the
integrated and exponential autocorrelation times for energy and magnetization.
As expected, cluster algorithms are characterized by lower values of dynamical
critical exponent than the local one: also in the case of dilution critical
slowing down is more pronounced for the Metropolis algorithm. However, the
striking feature of our estimates is that they suggest that dilution leads to
decrease of the dynamical critical exponent for the cluster algorithms. This
phenomenon is quite opposite to the local dynamics, where dilution enhances
critical slowing down.Comment: 24 pages, 16 figures, style file include
High-temperature series for the bond-diluted Ising model in 3, 4 and 5 dimensions
In order to study the influence of quenched disorder on second-order phase
transitions, high-temperature series expansions of the \sus and the free energy
are obtained for the quenched bond-diluted Ising model in --5
dimensions. They are analysed using different extrapolation methods tailored to
the expected singularity behaviours. In and 5 dimensions we confirm
that the critical behaviour is governed by the pure fixed point up to dilutions
near the geometric bond percolation threshold. The existence and form of
logarithmic corrections for the pure Ising model in is confirmed and
our results for the critical behaviour of the diluted system are in agreement
with the type of singularity predicted by renormalization group considerations.
In three dimensions we find large crossover effects between the pure Ising,
percolation and random fixed point. We estimate the critical exponent of the
\sus to be at the random fixed point.Comment: 16 pages, 10 figure
Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems
An extension of the synchronous parallel kinetic Monte Carlo (pkMC) algorithm
developed by Martinez {\it et al} [{\it J.\ Comp.\ Phys.} {\bf 227} (2008)
3804] to discrete lattices is presented. The method solves the master equation
synchronously by recourse to null events that keep all processors time clocks
current in a global sense. Boundary conflicts are rigorously solved by adopting
a chessboard decomposition into non-interacting sublattices. We find that the
bias introduced by the spatial correlations attendant to the sublattice
decomposition is within the standard deviation of the serial method, which
confirms the statistical validity of the method. We have assessed the parallel
efficiency of the method and find that our algorithm scales consistently with
problem size and sublattice partition. We apply the method to the calculation
of scale-dependent critical exponents in billion-atom 3D Ising systems, with
very good agreement with state-of-the-art multispin simulations
Computer simulation of the critical behavior of 3D disordered Ising model
The critical behavior of the disordered ferromagnetic Ising model is studied
numerically by the Monte Carlo method in a wide range of variation of
concentration of nonmagnetic impurity atoms. The temperature dependences of
correlation length and magnetic susceptibility are determined for samples with
various spin concentrations and various linear sizes. The finite-size scaling
technique is used for obtaining scaling functions for these quantities, which
exhibit a universal behavior in the critical region; the critical temperatures
and static critical exponents are also determined using scaling corrections. On
the basis of variation of the scaling functions and values of critical
exponents upon a change in the concentration, the conclusion is drawn
concerning the existence of two universal classes of the critical behavior of
the diluted Ising model with different characteristics for weakly and strongly
disordered systems.Comment: 14 RevTeX pages, 6 figure
Relaxational dynamics in 3D randomly diluted Ising models
We study the purely relaxational dynamics (model A) at criticality in
three-dimensional disordered Ising systems whose static critical behaviour
belongs to the randomly diluted Ising universality class. We consider the
site-diluted and bond-diluted Ising models, and the +- J Ising model along the
paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations
at the critical point using the Metropolis algorithm and study the dynamic
behaviour in equilibrium at various values of the disorder parameter. The
results provide a robust evidence of the existence of a unique model-A dynamic
universality class which describes the relaxational critical dynamics in all
considered models. In particular, the analysis of the size-dependence of
suitably defined autocorrelation times at the critical point provides the
estimate z=2.35(2) for the universal dynamic critical exponent. We also study
the off-equilibrium relaxational dynamics following a quench from T=\infty to
T=T_c. In agreement with the field-theory scenario, the analysis of the
off-equilibrium dynamic critical behavior gives an estimate of z that is
perfectly consistent with the equilibrium estimate z=2.35(2).Comment: 38 page
Magnetostriction in the magneto-sensitive elastomers with inhomogeneously magnetized particles: pairwise interaction approximation
We analyze the magnetostriction effect occurring in the magneto-sensitive
elastomers (MSEs) containing inhomogeneously magnetized particles. As it was
shown before, the expression for the interaction potential between two magnetic
spheres, that accounts for their mutual inhomogeneous magnetization, can be
obtained from the Laplace equation. We use this potential in the approximation
formula form to construct magnetic energy of the sample in terms of the
pairwise interactions of the particles. We show that this form of magnetic
energy leads to the same demagnetizing factor as predicted by the continuum
mechanics, confirming that only dipole-dipole magnetic interactions are
important on a large scale. As the next step, we examine the role played by the
particles arrangement on the magnetostriction effect. We consider different
spatial distributions of the magnetic particles: a uniform one, as well as
several lattice-type distributions (SC, BCC, HCP and FCC arrangements). We show
that the particles arrangement affects significantly the magnetostriction
effect if the separation between them became comparable with the particles'
dimensions. We also show that, typically, this contribution to the
magnetostriction effect is of the opposite sign to the one related with the
initial elastomer shape. Finally, we calculate the magnetostriction effect
using the same interaction potential but expressed in a form of a series
expansion, qualitatively confirming the above findings
- …
