13,322 research outputs found
Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3
In this contribution we briefly describe our recent results on the properties
of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys
using Subaru telescope, and through the comparison with samples at lower
redshift ranges we discuss the evolution of star-forming galaxies in the early
universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235,
Galaxies Across the Hubble Time, J. Palous & F. Combes, ed
Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction
We study a non-ergodic transition in a many-body Langevin system. We first
derive an equation for the two-point time correlation function of density
fluctuations, ignoring the contributions of the third- and fourth-order
cumulants. For this equation, with the average density fixed, we find that
there is a critical temperature at which the qualitative nature of the
trajectories around the trivial solution changes. Using a method of dynamical
system reduction around the critical temperature, we simplify the equation for
the time correlation function into a two-dimensional ordinary differential
equation. Analyzing this differential equation, we demonstrate that a
non-ergodic transition occurs at some temperature slightly higher than the
critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe
A new method of alpha ray measurement using a Quadrupole Mass Spectrometer
We propose a new method of alpha()-ray measurement that detects
helium atoms with a Quadrupole Mass Spectrometer(QMS). A demonstration is
undertaken with a plastic-covered Am -emitting source to detect
-rays stopped in the capsule. We successfully detect helium atoms that
diffuse out of the capsule by accumulating them for one to 20 hours in a closed
chamber. The detected amount is found to be proportional to the accumulation
time. Our method is applicable to probe -emitting radioactivity in bulk
material.Comment: 8 pages, 6 figure
Assembling strategies in extrinsic evolvable hardware with bi-directional incremental evolution
Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations)
Ingredients of nuclear matrix element for two-neutrino double-beta decay of 48Ca
Large-scale shell model calculations including two major shells are carried
out, and the ingredients of nuclear matrix element for two-neutrino double beta
decay are investigated. Based on the comparison between the shell model
calculations accounting only for one major shell (-shell) and those for two
major shells (-shell), the effect due to the excitation across the two
major shells is quantitatively evaluated.Comment: To appear in J. Phys. Soc. Conf. Proc. (ARIS2014); for ver.2, Fig.1
is revise
A universal form of slow dynamics in zero-temperature random-field Ising model
The zero-temperature Glauber dynamics of the random-field Ising model
describes various ubiquitous phenomena such as avalanches, hysteresis, and
related critical phenomena. Here, for a model on a random graph with a special
initial condition, we derive exactly an evolution equation for an order
parameter. Through a bifurcation analysis of the obtained equation, we reveal a
new class of cooperative slow dynamics with the determination of critical
exponents.Comment: 4 pages, 2 figure
High-precision spectroscopy of ultracold molecules in an optical lattice
The study of ultracold molecules tightly trapped in an optical lattice can
expand the frontier of precision measurement and spectroscopy, and provide a
deeper insight into molecular and fundamental physics. Here we create, probe,
and image microkelvin Sr molecules in a lattice, and demonstrate
precise measurements of molecular parameters as well as coherent control of
molecular quantum states using optical fields. We discuss the sensitivity of
the system to dimensional effects, a new bound-to-continuum spectroscopy
technique for highly accurate binding energy measurements, and prospects for
new physics with this rich experimental system.Comment: 12 pages, 4 figure
Spin Pumping of Current in Non-Uniform Conducting Magnets
Using irreversible thermodynamics we show that current-induced spin transfer
torque within a magnetic domain implies spin pumping of current within that
domain. This has experimental implications for samples both with conducting
leads and that are electrically isolated. These results are obtained by
deriving the dynamical equations for two models of non-uniform conducting
magnets: (1) a generic conducting magnet, with net conduction electron density
n and net magnetization ; and (2) a two-band magnet, with up and down
spins each providing conduction and magnetism. For both models, in regions
where the equilibrium magnetization is non-uniform, voltage gradients can drive
adiabatic and non-adiabatic bulk spin torques. Onsager relations then ensure
that magnetic torques likewise drive adiabatic and non-adiabatic currents --
what we call bulk spin pumping. For a given amount of adiabatic and
non-adiabatic spin torque, the two models yield similar but distinct results
for the bulk spin pumping, thus distinguishing the two models. As in the recent
spin-Berry phase study by Barnes and Maekawa, we find that within a domain wall
the ratio of the effective emf to the magnetic field is approximately given by
, where P is the spin polarization. The adiabatic spin torque
and spin pumping terms are shown to be dissipative in nature.Comment: 13 pages in pdf format; 1 figur
A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization
We present a new measurement of the integrated stellar mass per comoving
volume at redshift 5 determined via spectral energy fitting drawn from a sample
of 214 photometrically-selected galaxies with z'<26.5 in the southern GOODS
field. Following procedures introduced by Eyles et al. (2005), we estimate
stellar masses for various sub-samples for which reliable and unconfused
Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most
luminous sources with =4.92 provides a firm lower limit to the stellar mass
density of 1e6 Msun/Mpc^3. Several galaxies in this sub-sample have masses of
order 10^11 Msun implying significant earlier activity occurred in massive
systems. We then consider a larger sample whose photometric redshifts in the
publicly-available GOODS-MUSIC catalog lie in the range 4.4 <z 5.6. Before
adopting the GOODS-MUSIC photometric redshifts, we check the accuracy of their
photometry and explore the possibility of contamination by low-z galaxies and
low-mass stars. After excising probable stellar contaminants and using the z'-J
color to exclude any remaining foreground red galaxies, we conclude that 196
sources are likely to be at z~5. The implied mass density from the unconfused
IRAC fraction of this sample, scaled to the total available, is 6e6 Msun/Mpc^3.
We discuss the uncertainties as well as the likelihood that we have
underestimated the true mass density. Including fainter and quiescent sources
the total integrated density could be as high as 1e7 Msun/Mpc^3. Using the
currently available (but highly uncertain) rate of decline in the star
formationhistory over 5 <z< 10, a better fit is obtained for the assembled mass
at z~5 if we admit significant dust extinction at early times or extend the
luminosity function to very faint limits. [abridged]Comment: Accepted for Publication in ApJ, 39 page
- …
