312 research outputs found
Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals
We present a high-resolution photoluminescence study of Er-doped SiO2
sensitized with Si nanocrystals (Si NCs). Emission bands originating from
recombination of excitons confined in Si NCs and of internal transitions within
the 4f-electron core of Er3+ ions, and a band centered at lambda = 1200nm have
been identified. Their kinetics have been investigated in detail. Based on
these measurements, we present a comprehensive model for energy transfer
mechanisms responsible for light generation in this system. A unique picture of
energy flow between subsystems of Er3+ and Si NCs is developed, yielding truly
microscopic information on the sensitization effect and its limitations. In
particular, we show that most of the Er3+ ions available in the system are
participating in the energy exchange. The long standing problem of apparent
loss of optical activity of majority of Er dopants upon sensitization with Si
NCs is clarified and assigned to appearance of a very efficient energy exchange
mechanism between Si NCs and Er3+ ions. Application potential of SiO2:Er
sensitized by Si NCs is discussed in view of the newly acquired microscopic
insight.Comment: 30 pages 13 figure
Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus
Gene regulation relies on transcription factors (TFs) exploring the nucleus searching their targets. So far, most studies have focused on how fast TFs diffuse, underestimating the role of nuclear architecture. We implemented a single-molecule tracking assay to determine TFs dynamics. We found that c-Myc is a global explorer of the nucleus. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations are consistent with a model in which the exploration geometry of TFs is restrained by their interactions with nuclear structures and not by exclusion. The geometry-controlled kinetics of TFs target-search illustrates the influence of nuclear architecture on gene regulation, and has strong implications on how proteins react in the nucleus and how their function can be regulated in space and time.Nikon France (Research contract)France. Agence nationale de la recherche (PCV DYNAFT 08-PCVI-0013)France. Agence nationale de la recherche (DynamIC ANR-12-BSV5-0018)Fondation pour la recherche médicaleNetherlands Organization for Scientific Research (Rubicon fellowship
Decision-Maker’s Preferences Modelling through PROMETHEE Method for Supplier Selection
Multi-Criteria Decision Aid (MCDA) approach is widely applied in different
decision-making contexts including supply chain management and supplier selection.
PROMETHEE is one of the most popular MCDA method that allows the Decision-Maker
integrating explicitly his/her preference to choose the alternative of the best compromise.
In this paper we are applying this method to select the best supplier where several
incommensurable and conflicting criteria are simultaneously taken into consideration.
The decision-making context is related to an Information Technology department within
a management company in Doha, Qatar. We will illustrate how the Decision-Maker’s
preferences were integrated in the model for selecting the supplier of the best comprises
and how the Decision-Maker was evolving towards the best recommendatio
RNA Polymerase II cluster dynamics predict mRNA output in living cells
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output.National Cancer Institute (U.S.) (DP2CA195769
Transcription factor clusters regulate genes in eukaryotic cells
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression
One-shot measurement of the three-dimensional electromagnetic field scattered by a subwavelength aperture tip coupled to the environment
International audienceNear-field scanning optical microscopy (NSOM) achieves subwavelength resolution by bringing a nanosized probe close to the surface of the sample. This extends the spectrum of spatial frequencies that can be detected with respect to a diffraction limited microscope. The interaction of the probe with the sample is expected to affect its radiation to the far field in a way that is often hard to predict. Here we address this question by proposing a general method based on full-field off-axis digital holography microscopy which enables to study in detail the far-field radiation from a NSOM probe as a function of its environment. A first application is demonstrated by performing a three-dimensional (3D) tomographic reconstruction of light scattered from the sub-wavelength aperture tip of a NSOM, in free space or coupled to transparent and plasmonic media. A single holographic image recorded in one shot in the far field contains information on both the amplitude and phase of the scattered light. This is sufficient to reverse numerically the propagation of the electromagnetic field all the way to the aperture tip. Finite Difference Time Domain (FDTD) simulations are performed to compare the experimental results with a superposition of magnetic and electric dipole radiation
- …
