634 research outputs found

    Isotropic subbundles of TMTMTM\oplus T^*M

    Full text link
    We define integrable, big-isotropic structures on a manifold MM as subbundles ETMTME\subseteq TM\oplus T^*M that are isotropic with respect to the natural, neutral metric (pairing) gg of TMTMTM\oplus T^*M and are closed by Courant brackets (this also implies that [E,Eg]Eg[E,E^{\perp_g}]\subseteq E^{\perp_g}). We give the interpretation of such a structure by objects of MM, we discuss the local geometry of the structure and we give a reduction theorem.Comment: LaTex, 37 pages, minimization of the defining condition

    Coupling Poisson and Jacobi structures on foliated manifolds

    Full text link
    Let M be a differentiable manifold endowed with a foliation F. A Poisson structure P on M is F-coupling if the image of the annihilator of TF by the sharp-morphism defined by P is a normal bundle of the foliation F. This notion extends Sternberg's coupling symplectic form of a particle in a Yang-Mills field. In the present paper we extend Vorobiev's theory of coupling Poisson structures from fiber bundles to foliations and give simpler proofs of Vorobiev's existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. Then we discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.Comment: LateX, 38 page

    Distance-hereditary embeddings of circulant graphs

    Get PDF
    ©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.In this paper we present a distance-hereditary decomposition of optimal chordal rings of 2k2 nodes into a set of rings of 2k nodes, where k is the diameter. All the rings belonging to this set have the same length and their diameter corresponds to the diameter of the chordal ring in which they are embedded. The members of this embedded set of rings are non-disjoint and preserve the minimal routing of the original circulant graph. Besides its practical consequences, our research allows the presentation of these optimal circulant graphs as a particular evolution of the traditional ring topology.Carmen Martinez, Beivide Beivide, Jaime Gutierrez, [Maria] Cruz Iz

    Effects of injection pressure on network throughput

    Get PDF
    ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Recent parallel systems use multiple injection ports and various injection policies, but little is known about their impact on network performance. This paper evaluates the influence that these injection interfaces have on maximum sustained throughput in adaptive cut-through torus networks by modeling the number of injection queues (1 or 4), and the allocation of new packets to those queues. Network evaluations for medium to large size 2D tori show that designs with multiple injection ports do not improve performance under uniform traffic. On the contrary, they result in more pressure from the injection interface to acquire the scarce network resources of an already clogged system. Interestingly, for small networks, a single injection FIFO queue, with the HOLB it entails, indirectly provides the much needed injection control. For networks with thousands of nodes and multiple injection channels, as those being implemented in current massively parallel processors, this implicit form of congestion control is not enough. In such systems, restrictive injection policies are required to prevent routers from being flooded with new packets for loads beyond saturation.C. Izu, J. Miguel-Alonso, J.A. Gregori

    On the design of a high-performance adaptive router for CC-NUMA multiprocessors

    Get PDF
    Copyright © 2003 IEEEThis work presents the design and evaluation of an adaptive packet router aimed at supporting CC-NUMA traffic. We exploit a simple and efficient packet injection mechanism to avoid deadlock, which leads to a fully adaptive routing by employing only three virtual channels. In addition, we selectively use output buffers for implementing the most utilized virtual paths in order to reduce head-of-line blocking. The careful implementation of these features has resulted in a good trade off between network performance and hardware cost. The outcome of this research is a High-Performance Adaptive Router (HPAR), which adequately balances the needs of parallel applications: minimal network latency at low loads and high throughput at heavy loads. The paper includes an evaluation process in which HPAR is compared with other adaptive routers using FIFO input buffering, with or without additional virtual channels to reduce head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their performance under synthetic and real application workloads. To make the comparison fair, all the routers use the same efficient deadlock avoidance mechanism. In all the experiments, HPAR exhibited the best response among all the routers tested. The throughput gains ranged from 10 percent to 40 percent in respect to its most direct rival, which employs more hardware resources. Other results shown that HPAR achieves up to 83 percent of its theoretical maximum throughput under random traffic and up to 70 percent when running real applications. Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. Therefore, HPAR can be considered as a suitable candidate to implement packet interchange in next generations of CC-NUMA multiprocessors.Valentín Puente, José-Ángel Gregorio, Ramón Beivide, and Cruz Iz

    Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes.

    Get PDF
    FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10-15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes

    Optical analysis of textured plastic substrates to be used in thin silicon solar cells

    Get PDF
    Light confinement strategies in thin-film silicon solar cells play a crucial role in the performance of the devices. In this work, the possible use of Ag-coated stamped polymers as reflectors to be used in n-i-p solar cells is studied. Different random roughnesses (nanometer and micrometer size) have been transferred on poly(methylmethacrylate) (PMMA) by hot embossing. Morphological and optical analyses of masters, stamped polymers and reflectors have been carried out evidencing a positive surface transference on the polymer and the viability of a further application in solar cells

    Arithmetic of split Kummer surfaces: Montgomery endomorphism of Edwards products

    No full text
    International audienceLet EE be an elliptic curve, K1\mathcal{K}_1 its Kummer curve E/{±1}E/\{\pm1\}, E2E^2 its square product, and K2\mathcal{K}_2 the split Kummer surface E2/{±1}E^2/\{\pm1\}. The addition law on E2E^2 gives a large endomorphism ring, which induce endomorphisms of K2\mathcal{K}_2. With a view to the practical applications to scalar multiplication on K1\mathcal{K}_1, we study the explicit arithmetic of K2\mathcal{K}_2
    corecore