7,948 research outputs found
The FORS1 catalogue of stellar magnetic field measurements
The FORS1 instrument on the ESO Very Large Telescope was used to obtain
low-resolution circular polarised spectra of nearly a thousand different stars,
with the aim of measuring their mean longitudinal magnetic fields. A catalogue
of FORS1 magnetic measurements would provide a valuable resource with which to
better understand the strengths and limitations of this instrument and of
similar low-dispersion, Cassegrain spectropolarimeters. However, FORS1 data
reduction has been carried out by a number of different groups using a variety
of reduction and analysis techniques. Our understanding of the instrument and
our data reduction techniques have both improved over time. A full re-analysis
of FORS1 archive data using a consistent and fully documented algorithm would
optimise the accuracy and usefulness of a catalogue of field measurements.
Based on the ESO FORS pipeline, we have developed a semi-automatic procedure
for magnetic field determinations, which includes self-consistent checks for
field detection reliability. We have applied our procedure to the full content
of circular spectropolarimetric measurements of the FORS1 archive. We have
produced a catalogue of spectro-polarimetric observations and magnetic field
measurements for about 1400 observations of about 850 different objects. The
spectral type of each object has been accurately classified. We have also been
able to test different methods for data reduction is a systematic way. The
resulting catalogue has been used to produce an estimator for an upper limit to
the uncertainty in a field strength measurement of an early type star as a
function of the signal-to-noise ratio of the observation. While FORS1 is not
necessarily an optimal instrument for the discovery of weak magnetic fields, it
is very useful for the systematic study of larger fields, such as those found
in Ap/Bp stars and in white dwarfs.Comment: Accepted for publication by A&
Scattering from Solutions of Star Polymers
We calculate the scattering intensity of dilute and semi-dilute solutions of
star polymers. The star conformation is described by a model introduced by
Daoud and Cotton. In this model, a single star is regarded as a spherical
region of a semi-dilute polymer solution with a local, position dependent
screening length. For high enough concentrations, the outer sections of the
arms overlap and build a semi-dilute solution (a sea of blobs) where the inner
parts of the actual stars are embedded. The scattering function is evaluated
following a method introduced by Auvray and de Gennes. In the dilute regime
there are three regions in the scattering function: the Guinier region (low
wave vectors, q R << 1) from where the radius of the star can be extracted; the
intermediate region (1 << q R << f^(2/5)) that carries the signature of the
form factor of a star with f arms: I(q) ~ q^(-10/3); and a high wavevector zone
(q R >> f^(2/5)) where the local swollen structure of the polymers gives rise
to the usual q^(-5/3) decay. In the semi-dilute regime the different stars
interact strongly, and the scattered intensity acquires two new features: a
liquid peak that develops at a reciprocal position corresponding to the
star-star distances; and a new large wavevector contribution of the form
q^(-5/3) originating from the sea of blobs.Comment: REVTeX, 12 pages, 4 eps figure
JCV-specific T-cells producing IFN-gamma are differently associated with PmL occurrence in HIV patients and liver transplant recipients
Aim of this work was to investigate a possible correlation between the frequency of JCV-specific T-cells and PML occurrence in HIV-infected subjects and in liver transplant recipients. A significant decrease of JCV-specific T-cells was observed in HIV-PML subjects, highlighting a close relation between JCV-specific T-cell immune impairment and PML occurrence in HIV-subjects. Interestingly, liver-transplant recipients (LTR) showed a low frequency of JCV-specific T-cells, similar to HIV-PML subjects. Nevertheless, none of the enrolled LTR developed PML, suggesting the existence of different immunological mechanisms involved in the maintenance of a protective immune response in LT
Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423
CONTEXT: The induced gravitational collapse (IGC) scenario has been
introduced in order to explain the most energetic gamma ray bursts (GRBs),
Eiso=10^{52}-10^{54}erg, associated with type Ib/c supernovae (SNe). It has led
to the concept of binary-driven hypernovae (BdHNe) originating in a tight
binary system composed by a FeCO core on the verge of a SN explosion and a
companion neutron star (NS). Their evolution is characterized by a rapid
sequence of events: [...]. AIMS: We investigate whether GRB 090423, one of the
farthest observed GRB at z=8.2, is a member of the BdHN family. METHODS: We
compare and contrast the spectra, the luminosity evolution and the
detectability in the observations by Swift of GRB 090423 with the corresponding
ones of the best known BdHN case, GRB 090618. RESULTS: Identification of
constant slope power-law behavior in the late X-ray emission of GRB 090423 and
its overlapping with the corresponding one in GRB 090618, measured in a common
rest frame, represents the main result of this article. This result represents
a very significant step on the way to using the scaling law properties, proven
in Episode 3 of this BdHN family, as a cosmological standard candle.
CONCLUSIONS: Having identified GRB 090423 as a member of the BdHN family, we
can conclude that SN events, leading to NS formation, can already occur already
at z=8.2, namely at 650 Myr after the Big Bang. It is then possible that these
BdHNe originate stem from 40-60 M_{\odot} binaries. They are probing the
Population II stars after the completion and possible disappearance of
Population III stars.Comment: 9 pages, 9 figures, to appear on A&
A common behavior in the late X-ray afterglow of energetic GRB-SN systems
The possibility to divide GRBs in different subclasses allow to understand
better the physics underlying their emission mechanisms and progenitors. The
induced gravitational collapse scenario proposes a binary progenitor to explain
the time-sequence in GRBs-SNe. We show the existence of a common behavior of
the late decay of the X-ray afterglow emission of this subclass of GRBs,
pointing to a common physical mechanism of their late emission, consistent with
the IGC picture.Comment: 3 pages, to appear in the proceedings of the Gamma-Ray Burst
Symposium 2012 - IAA-CSIC - Marbella, editors: Castro-Tirado, A. J.,
Gorosabel, J. and Park, I.
Induced Gravitational Collapse in the BATSE era: the case of GRB 970828
Following the recently established "Binary-driven HyperNova" (BdHN) paradigm,
we here interpret GRB 970828 in terms of the four episodes typical of such a
model. The "Episode 1", up to 40 s after the trigger time t_0, with a time
varying thermal emission and a total energy of E_{iso,1st} = 2.60 x 10^{53}
erg, is interpreted as due to the onset of an hyper-critical accretion process
onto a companion neutron star, triggered by the companion star, an FeCO core
approaching a SN explosion. The "Episode 2", observed up t_0+90 s, is
interpreted as a canonical gamma ray burst, with an energy of E^{e^+e^-}_{tot}
= 1.60 x 10^{53} erg, a baryon load of B = 7 x 10^{-3} and a bulk Lorentz
factor at transparency of \Gamma = 142.5. From this Episode 2, we infer that
the GRB exploded in an environment with a large average particle density
\approx 10^3 particles/cm^3 and dense clouds characterized by typical
dimensions of (4 \div 8) x 10^{14} cm and \delta n / n ~ 10. The "Episode 3" is
identified from t_0+90 s all the way up to 10^{5-6} s: despite the paucity of
the early X-ray data, typical in the BATSE, pre-Swift era, we find extremely
significant data points in the late X-ray afterglow emission of GRB 970828,
which corresponds to the ones observed in all BdHNe sources. The "Episode 4",
related to the Supernova emission, does not appear to be observable in this
source, due to the presence of darkening from the large density of the GRB
environment, also inferred from the analysis of the Episode 2.Comment: 25 pages, 5 figures, submitted to Astron.Re
The host of the Type I SLSN 2017egm: A young, sub-solar metallicity environment in a massive spiral galaxy
Here we present an integral-field study of the massive, high-metallicity
spiral NGC 3191, the host of SN 2017egm, the closest SLSN Type I to date. We
use data from PMAS/CAHA and the public MaNGA survey to shed light on the
properties of the SLSN site and the origin of star-formation in this
non-starburst spiral galaxy. We map the physical properties different
\ion{H}{II} regions throughout the galaxy and characterize their stellar
populations using the STARLIGHT fitting code. Kinematical information allows to
study a possible interaction with its neighbouring galaxy as the origin of
recent star formation activity which could have caused the SLSN. NGC 3191 shows
intense star-formation in the western part with three large SF regions of low
metallicity. The central regions of the host have a higher metallicity, lower
specific star-formation rate and lower ionization. Modeling the stellar
populations gives a different picture: The SLSN region has two dominant stellar
populations with different ages, the youngest one with an age of 2-10 Myr and
lower metallicity, likely the population from which the SN progenitor
originated. Emission line kinematics of NGC 3191 show indications of
interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be
responsible for the recent starburst. In fact, this galaxy pair has in total
hosted 4 SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl
(SLSN-Type II) and 2017egm, underlying the enhanced SF in both galaxies due to
interaction. Our study shows that one has to be careful interpreting global
host and even gas properties without looking at the stellar population history
of the region. SLSNe seem to still be consistent with massive stars ( 20
M) requiring low () metallicity and those environments
can also occur in massive, late-type galaxies but not necessarily starbursts.Comment: Accepted for publication in A&A, 13 pages, 11 figures, 7 tables.
Abstract has been reduced to match arXiv form requirement
Analysis of vertebral chemistry to assess stock structure in a deep-sea shark, Etmopterus spinax
First published online: October 27, 2016Deep-sea sharks play a valuable ecological role helping maintain food web balance, yet they are vulnerable to commercial fishing because of slow growth rates and low reproductive capacity. Overfishing of sharks can heavily impact marine ecosystems and the fisheries these support. Knowledge of stock structure is integral to sustainable management of fisheries. The present study analysed vertebral chemistry using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to assay concentrations of 7Li, 23Na, 24Mg, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 85Rb, 88Sr, 138Ba and 208Pb to assess stock structure in a deep-sea shark, Etmopterus spinax, in Norwegian and French waters. Few studies have applied this technique to elasmobranch vertebrae and the present study represents its first application to a deep-sea shark. Three stocks were identified at the regional scale off western Norway, southern Norway, and France. At finer spatial scales there was evidence of strong population mixing. Overall, the general pattern of stock structure outlined herein provides some indication of the spatial scales at which stocks should be viewed as distinct fisheries management units. The identification of an effective multi-element signature for distinguishing E. spinax stocks utilizing Sr, Ba, Mg, Zn and Pb and the methodological groundwork laid in the present study could also expedite future research into stock structure for E. spinax and deep-sea elasmobranchs more generally.Matthew N. McMillan, Christopher Izzo, Claudia Junge, Ole Thomas Albert, Armelle Jung and Bronwyn M. Gillander
- …
