59,466 research outputs found
A Note on Infinities in Eternal Inflation
In some well-known scenarios of open-universe eternal inflation, developed by
Vilenkin and co-workers, a large number of universes nucleate and thermalize
within the eternally inflating mega-universe. According to the proposal, each
universe nucleates at a point, and therefore the boundary of the nucleated
universe is a space-like surface nearly coincident with the future light cone
emanating from the point of nucleation, all points of which have the same
proper-time. This leads the authors to conclude that at the proper-time t =
t_{nuc} at which any such nucleation occurs, an infinite open universe comes
into existence. We point out that this is due entirely to the supposition of
the nucleation occurring at a single point, which in light of quantum cosmology
seems difficult to support. Even an infinitesimal space-like length at the
moment of nucleation gives a rather different result -- the boundary of the
nucleating universe evolves in proper-time and becomes infinite only in an
infinite time. The alleged infinity is never attained at any finite time.Comment: 13 pages and 6 figure
Supernova Constraints and Systematic Uncertainties from the First Three Years of the Supernova Legacy Survey
We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = –0.91^(+0.16)_(–0.20)(stat)^(+0.07)_(–0.14)(sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems
Exploring CP Violation in the MSSM
We explore the prospects for observing CP violation in the minimal
supersymmetric extension of the Standard Model (MSSM) with six CP-violating
parameters, three gaugino mass phases and three phases in trilinear soft
supersymmetry-breaking parameters, using the CPsuperH code combined with a
geometric approach to maximize CP-violating observables subject to the
experimental upper bounds on electric dipole moments. We also implement
CP-conserving constraints from Higgs physics, flavour physics and the upper
limits on the cosmological dark matter density and spin-independent scattering.
We study possible values of observables within the constrained MSSM (CMSSM),
the non-universal Higgs model (NUHM), the CPX scenario and a variant of the
phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry
A_CP in b -> s gamma decay that may be as large as 3%, so future measurements
of A_CP may provide independent information about CP violation in the MSSM. We
find that CP-violating MSSM contributions to the B_s meson mass mixing term
Delta M_Bs are in general below the present upper limit, which is dominated by
theoretical uncertainties. If these could be reduced, Delta M_Bs could also
provide an interesting and complementary constraint on the six CP-violating
MSSM phases, enabling them all to be determined experimentally, in principle.
We also find that CP violation in the h_{2,3} tau+ tau- and h_{2,3} tbar t
couplings can be quite large, and so may offer interesting prospects for future
pp, e+ e-, mu+ mu- and gamma gamma colliders.Comment: 36 pages, 32 figure
Oxide-apertured microcavity single-photon emitting diode
We have developed a microcavity single-photon source based on a single
quantum dot within a planar cavity in which wet-oxidation of a high-aluminium
content layer provides lateral confinement of both the photonic mode and the
injection current. Lateral confinement of the optical mode in optically pumped
structures produces a strong enhancement of the radiative decay rate. Using
microcavity structures with doped contact layers, we demonstrate a
single-photon emitting diode where current may be injected into a single dot
Bose-Einstein Final State Symmetrization for Event Generators of Heavy Ion Collisions
We discuss algorithms which allow to calculate identical two-particle
correlations from numerical simulations of relativistic heavy ion collisions. A
toy model is used to illustrate their properties.Comment: Talk given at CRIS'98 (Catania, June 8-12, 1998), to appear in
"CRIS'98: Measuring the size of things in the Universe: HBT interferometry
and heavy ion physics", (S. Costa et al., eds.), World Scientific, Singapore,
1998. (10 pages Latex, 1 eps-figure, extended version of conference
proceedings, Fig1 a,b added and corresponding discussion enlarged
Accelerator Constraints on Neutralino Dark Matter
The constraints on neutralino dark matter \chi obtained from accelerator
searches at LEP, the Fermilab Tevatron and elsewhere are reviewed, with
particular emphasis on results from LEP 1.5. These imply within the context of
the minimal supersymmetric extension of the Standard Model that m_\chi \ge 21.4
GeV if universality is assumed, and yield for large tan\beta a significantly
stronger bound than is obtained indirectly from Tevatron limits on the gluino
mass. We update this analysis with preliminary results from the first LEP 2W
run, and also preview the prospects for future sparticle searches at the LHC.Comment: Presented by J. Ellis at the Workshop on the Identification of Dark
Matter, Sheffield, September, 1996. 14 pages; Latex; 12 Fig
Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight into Lorentz invariance violation
We examine what the absorbed spectra of extra-galactic TeV gamma-ray sources,
such as blazars, would look like in the presence of Lorentz invariance
violation (LIV). Pair-production with the extra-galactic background light
modifies the observed spectra of such sources, and we show that a violation of
Lorentz invariance would generically have a dramatic effect on this absorption
feature. Inspecting this effect, an experimental task likely practical in the
near future, can provide unique insight on the possibility of LIV.Comment: Published in Phys. Rev.
Direct Detection of Dark Matter in the MSSM with Non-Universal Higgs Masses
We calculate dark matter scattering rates in the minimal supersymmetric
extension of the Standard Model (MSSM), allowing the soft
supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be
non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which
m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0
of the squark and slepton masses, we find that the elastic scattering cross
sections may be up to two orders of magnitude larger than values in the CMSSM
for similar LSP masses. We find the following preferred ranges for the
spin-independent cross section: 10^{-6} pb \ga \sigma_{SI} \ga 10^{-10} pb, and
for the spin-dependent cross section: 10^{-3} pb \ga \sigma_{SD}, with the
lower bound on \sigma_{SI} dependent on using the putative constraint from the
muon anomalous magnetic moment. We stress the importance of incorporating
accelerator and dark matter constraints in restricting the NUHM parameter
space, and also of requiring that no undesirable vacuum appear below the GUT
scale. In particular, values of the spin-independent cross section another
order of magnitude larger would appear to be allowed, for small \tan \beta, if
the GUT vacuum stability requirement were relaxed, and much lower cross-section
values would be permitted if the muon anomalous magnetic moment constraint were
dropped.Comment: 30 pages LaTeX, 40 eps figure
- …
