12,880 research outputs found
Unbounded-error One-way Classical and Quantum Communication Complexity
This paper studies the gap between quantum one-way communication complexity
and its classical counterpart , under the {\em unbounded-error}
setting, i.e., it is enough that the success probability is strictly greater
than 1/2. It is proved that for {\em any} (total or partial) Boolean function
, , i.e., the former is always exactly one half
as large as the latter. The result has an application to obtaining (again an
exact) bound for the existence of -QRAC which is the -qubit random
access coding that can recover any one of original bits with success
probability . We can prove that -QRAC exists if and only if
. Previously, only the construction of QRAC using one qubit,
the existence of -RAC, and the non-existence of
-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200
Unbounded-Error Classical and Quantum Communication Complexity
Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86},
the unbounded-error classical communication complexity of a Boolean function
has been studied based on the arrangement of points and hyperplanes. Recently,
\cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum}
communication complexity in the {\em one-way communication} model can also be
investigated using the arrangement, and showed that it is exactly (without a
difference of even one qubit) half of the classical one-way communication
complexity. In this paper, we extend the arrangement argument to the {\em
two-way} and {\em simultaneous message passing} (SMP) models. As a result, we
show similarly tight bounds of the unbounded-error two-way/one-way/SMP
quantum/classical communication complexities for {\em any} partial/total
Boolean function, implying that all of them are equivalent up to a
multiplicative constant of four. Moreover, the arrangement argument is also
used to show that the gap between {\em weakly} unbounded-error quantum and
classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200
Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums
Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed
Local availability and long-range trade: the worked stone assemblage
Inter disciplinary study of major excavation assemblage from Norse settlement site in Orkney. Combines methodological and typological developments with scientific discussion
Paramagnonlike excitations and spin diffusion in magnetic resonance studies of copper oxide superconductors
The relaxation function theory for a doped two-dimensional Heisenberg
antiferromagnetic system in the paramagnetic state for all wave vectors through
the Brillouin zone is presented in view of low frequency response of high-
copper oxide superconductors. We deduced the regions of long lifetime [ K] and "overdamped" [ K]
paramagnonlike excitations in the temperature ()-doping index () phase
diagram from plane oxygen nuclear spin-lattice relaxation rate
data in up to optimally doped LaSrCuO thus providing the
regimes for the spin wave concept and the ''overdamped'' mode.Comment: Physical Review B, accepted, in pres
High-mass star formation in southern disk galaxies
As part of a major study of the physical processes of star formation and the evolution of galactic discs, the detailed distribution of high-mass star formation within southern late-type spirals and Magellanic-type galaxies is being measured by means of narrow-band imaging in Ha and the continuum, spectroscopic studies of prominent HII regions identified in the Ha images, and by radio mapping in neutral hydrogen and the continuum. The radio mapping will be undertaken with the Southern Hemisphere's first large, multi-frequency synthesis array, the Australia Telescope. Some optical imaging and spectroscopic data has already been acquired; the optical data and some preliminary results are described
The Detection of Outflows in the IR-Quiet Molecular Core NGC 6334 I(North)
We find strong evidence for outflows originating in the dense molecular core
NGC 6334 I(North): a 1000 Msol molecular core distinguished by its lack of HII
regions and mid-IR emission. New observations were obtained of the SiO 2-1 and
5-4 lines with the SEST 15-m telescope and the H2 (1-0) S(1) line with the ESO
2.2-m telescope. The line profiles of the SiO transitions show broad wings
extending from -50 to 40 km/s, and spatial maps of the line wing emission
exhibit a bipolar morphology with the peaks of the red and blue wing separated
by 30". The estimated mass loss rate of the outflow is comparable to those for
young intermediate to high-mass stars. The near-IR images show eight knots of
H2 emission. Five of the knots form a linear chain which is displaced from the
axis of the SiO outflow; these knots may trace shock excited gas along the path
of a second, highly collimated outflow. We propose that I(N) is a rare example
of a molecular core in an early stage of cluster formation.Comment: 4 pages, LaTeX, 3 ps figures, accepted by ApJ
The Remarkable Mid-Infrared Jet of Massive Young Stellar Object G35.20-0.74
The young massive stellar object G35.20-0.74 was observed in the mid-infrared
using T-ReCS on Gemini South. Previous observations have shown that the near
infrared emission has a fan-like morphology that is consistent with emission
from the northern lobe of a bipolar radio jet known to be associated with this
source. Mid-infrared observations presented in this paper show a monopolar
jet-like morphology as well, and it is argued that the mid-infrared emission
observed is dominated by thermal continuum emission from dust. The mid-infrared
emission nearest the central stellar source is believed to be directly heated
dust on the walls of the outflow cavity. The hydroxyl, water, and methanol
masers associated with G35.20-0.74 are spatially located along these
mid-infrared cavity walls. Narrow jet or outflow cavities such as this may also
be the locations of the linear distribution of methanol masers that are found
associated with massive young stellar objects. The fact that G35.20-0.74 has
mid-infrared emission that is dominated by the outflow, rather than disk
emission, is a caution to those that consider mid-infrared emission from young
stellar objects as only coming from circumstellar disks.Comment: Accepted for publication in ApJ Letters; 4 pages; 2 figures; a
version with full resolution images is available here:
http://www.ctio.noao.edu/~debuizer
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Direct Experimental Evidence for the Hybridization of Organic Molecular Orbitals with Substrate States at Interfaces: PTCDA on Silver
We demonstrate the application of orbital k-space tomography for the analysis
of the bonding occurring at metal-organic interfaces. Using angle-resolved
photoelectron spectroscopy (ARPES), we probe the spatial structure of the
highest occupied molecular orbital (HOMO) and the former lowest unoccupied
molecular orbital (LUMO) of one monolayer
3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Ag(110) and (111)
surfaces and in particular the influence of the hybridization between the
orbitals and the electronic states of the substrate. We are able to quantify
and localize the substrate contribution to the LUMO and thus prove the
metal-molecule hybrid character of this complex state.Comment: Accepted version, PRL. Supplemented figures, one additional
reference, minor changes in wordin
- …
