3,686 research outputs found
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
How does breakup influence the total fusion of Li at the Coulomb barrier?
Total (complete + incomplete) fusion excitation functions of Li on
Co and Bi targets around the Coulomb barrier are obtained using
a new continuum discretized coupled channel (CDCC) method of calculating
fusion. The relative importance of breakup and bound-state structure effects on
total fusion is particularly investigated. The effect of breakup on fusion can
be observed in the total fusion excitation function. The breakup enhances the
total fusion at energies just around the barrier, whereas it hardly affects the
total fusion at energies well above the barrier. The difference between the
experimental total fusion cross sections for Li on Co is notably
caused by breakup, but this is not the case for the Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
Exact scaling of pair production in the high-energy limit of heavy-ion collisions
The two-center Dirac equation for an electron in the external electromagnetic
field of two colliding heavy ions in the limit in which the ions are moving at
the speed of light is exactly solved and nonperturbative amplitudes for free
electron-positron pair production are obtained. We find the condition for the
applicability of this solution for large but finite collision energy, and use
it to explain recent experimental results. The observed scaling of positron
yields as the square of the projectile and target charges is a result of an
exact cancellation of a nonperturbative charge dependence and holds as well for
large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR
Asymptotic Normalization Coefficients for 13C+p->14N
The proton exchange reaction has been measured
at an incident energy of 162 MeV. Angular distributions were obtained for
proton transfer to the ground and low lying excited states in . Elastic
scattering of on also was measured out to the rainbow angle
region in order to find reliable optical model potentials. Asymptotic
normalization coefficients for the system have been
found for the ground state and the excited states at 2.313, 3.948, 5.106 and
5.834 MeV in . These asymptotic normalization coefficients will be used
in a determination of the S-factor for at solar
energies from a measurement of the proton transfer reaction
.Comment: 5 pages, 6 figure
Collective Modes of Tri-Nuclear Molecules
A geometrical model for tri-nuclear molecules is presented. An analytical
solution is obtained provided the nuclei, which are taken to be prolately
deformed, are connected in line to each other. Furthermore, the tri-nuclear
molecule is composed of two heavy and one light cluster, the later sandwiched
between the two heavy clusters. A basis is constructed in which Hamiltonians of
more general configurations can be diagonalized. In the calculation of the
interaction between the clusters higher multipole deformations are taken into
account, including the hexadecupole one. A repulsive nuclear core is introduced
in the potential in order to insure a quasi-stable configuration of the system.
The model is applied to three nuclear molecules, namely Sr + Be +
Ba, Mo + Be + Te and Ru + Be +
Sn.Comment: 24 pages, 9 figure
Expanding the parameters of academia
This paper draws on qualitative data gathered from two studies funded by the UK Leadership Foundation for Higher Education to examine the expansion of academic identities in higher education. It builds on Whitchurch’s earlier work, which focused primarily on professional staff, to suggest that the emergence of broadly based projects such as widening participation, learning support and community partnership is also impacting on academic identities. Thus, academic as well as professional staff are increasingly likely to work in multi-professional teams across a variety of constituencies, as well as with external partners, and the binary distinction between ‘academic’ and ‘non-academic’ roles and activities is no longer clear-cut. Moreover, there is evidence from the studies of an intentionality about deviations from mainstream academic career routes among respondents who could have gone either way. Consideration is therefore given to factors that influence individuals to work in more project-oriented areas, as well as to variables that affect ways in which these roles and identities develop. Finally, three models of academically oriented project activity are identified, and the implications of an expansion of academic identities are reviewed
Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions
We discuss the two-center, time-dependent Dirac equation describing the
dynamics of an electron during a peripheral, relativistic heavy-ion collision
at extreme energies. We derive a factored form, which is exact in the
high-energy limit, for the asymptotic channel solutions of the Dirac equation,
and elucidate their close connection with gauge transformations which transform
the dynamics into a representation in which the interaction between the
electron and a distant ion is of short range. We describe the implications of
this relationship for solving the time-dependent Dirac equation for extremely
relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR
On several families of elliptic curves with arbitrary large Selmer groups
In this paper, we calculate the Selmer groups
S^{(\phi)} (E / \Q) and S^{(\hat{\varphi})} (E^{\prime} / \Q) of elliptic
curves via descent theory
(see [S, Chapter X]), in particular, we obtain that the Selmer groups of
several families of such elliptic curves can be arbitrary large.Comment: 22 page
Core handling and processing for the WAIS Divide ice-core project
On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed
- …
