151 research outputs found

    Time-resolved PhotoEmission Spectroscopy on a Metal/Ferroelectric Heterostructure

    Full text link
    In thin film ferroelectric capacitor the chemical and electronic structure of the electrode/FE interface can play a crucial role in determining the kinetics of polarization switching. We investigate the electronic structure of a Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy. The chemical, electronic and depth sensitivity of core level photoemission is used to probe the transient response of different parts of the upper electrode/ferroelectric interface to voltage pulse induced polarization reversal. The linear response of the electronic structure agrees quantitatively with a simple RC circuit model. The non-linear response due to the polarization switch is demonstrated by the time-resolved response of the characteristic core levels of the electrode and the ferroelectric. Adjustment of the RC circuit model allows a first estimation of the Pt/BTO interface capacitance. The experiment shows the interface capacitance is at least 100 times higher than the bulk capacitance of the BTO film, in qualitative agreement with theoretical predictions from the literature.Comment: 7 pages, 10 figures. Submitted to Phys. Rev.

    An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge

    Get PDF
    This paper presents an original interactive system for efficient medical image segmentation in computer aided diagnosis. The main originality concerns the method used to manage, according to an a priori topological-based structural model, regions of interest (ROIs) within which computations can be constrained. The goal is then to avoid the processing of irrelevant image points, therefore improving and accelerating segmentations. In the case of a hierarchical modeling procedure, our ROI management method enables, for delineating a given medical structure, to optimally determine image points of interest by taking previously segmented structures into account. We propose a mathematical formulation of the method as well as a possible implementation within an interactive system. We also detail an experience report focussing on the segmentation of several abdominal structures from a CT image. It illustrates the behavior and the potential of our method

    Interface Electronic Structure in a Metal/Ferroelectric Heterostructure under Applied Bias

    Full text link
    The effective barrier height between an electrode and a ferroelectric (FE) depends on both macroscopic electrical properties and microscopic chemical and electronic structure. The behavior of a prototypical electrode/FE/electrode structure, Pt/BaTiO3/Nb-doped SrTiO3, under in-situ bias voltage is investigated using X-Ray Photoelectron Spectroscopy. The full band alignment is measured and is supported by transport measurements. Barrier heights depend on interface chemistry and on the FE polarization. A differential response of the core levels to applied bias as a function of the polarization state is observed, consistent with Callen charge variations near the interface.Comment: 9 pages, 8 figures. Submitted to Phys. Rev.

    Robotic microassembly and micromanipulation at FEMTO-ST

    No full text
    International audienceThis paper deals with a historical overview of Q1 Q2 8 9 the activities of the French FEMTO-ST institute in the 10 field of microrobotic manipulation and assembly. It firstly 11 shows tools developed for fine and coarse positioning: 12 4 DOF microgrippers, 2 DOF modules and smart sur13 faces. The paper then goes on the automation of tridimen14 sional microassembly of objects measuring between 10 and 15 400 microns. We are especially focusing on several princi16 ples. Closed loop control based on micro-vision has been 17 studied and applied on the fully automatic assembly of 18 several 400 microns objects. Force control has been also 19 analyzed and is proposed for optical Microsystems assem20 bly. At least, open loop trajectories of 40 microns objects 21 with a throughput of 1,800 unit per hour have been achieved. 22 Scientific and technological aspects and industrial relevance will be presented

    A step towards stereotactic navigation during pelvic surgery: 3D nerve topography

    Get PDF
    Background: Long-term morbidity after multimodal treatment for rectal cancer is suggested to be mainly made up by nerve-injury-related dysfunctions. Stereotactic navigation for rectal surgery was shown to be feasible and will be facilitated by highlighting structures at risk of iatrogenic damage. The aim of this study was to investigate the ability to make a 3D map of the pelvic nerves with magnetic resonance imaging (MRI). Methods: A systematic review was performed to identify a main positional reference for each pelvic nerve and plexus. The nerves were manually delineated in 20 volunteers who were scanned with a 3-T MRI. The nerve identifiability rate and the likelihood of nerve identification correctness were determined. Results: The analysis included 61 studies on pelvic nerve anatomy. A main positional reference was defined for each nerve. On MRI, the sacral nerves, the lumbosacral plexus, and the obturator nerve could be identified bilaterally in all volunteers. The sympathetic trunk could be identified in 19 of 20 volunteers bilaterally (95%). The superior hypogastric plexus, the hypogastric nerve, and the inferior hypogastric plexus could be identified bilaterally in 14 (70%), 16 (80%), and 14 (70%) of the 20 volunteers, respectively. The pudendal nerve could be identified in 17 (85%) volunteers on the right side and in 13 (65%) volunteers on the left side. The levator ani nerve could be identified in only a few volunteers. Except for the levator ani nerve, the radiologist and the anatomist agreed that the delineated nerve depicted the correct nerve in 100% of the cases. Conclusion: Pelvic nerves at risk of injury are usually visible on high-resolution MRI w

    Asynchronous Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics

    Full text link

    Mapping social work across 10 countries: Structure, intervention, identity and challenges

    Get PDF
    An emerging global consciousness and rising attention given to international social work development has seen the recognition of comparative research within the profession. Understanding the functioning and organisation of social work within various country contexts is critical in order to formulate knowledge around its overall impact, successes and challenges, allowing social workers to learn from one another and build professional consolidation. The profession is mapped out in 10 countries, reflecting on its structure, identity and development. Although the profession is developing globally, it is also experiencing significant challenges. Key insights, conclusions and recommendations for future research are presented

    Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery

    Get PDF
    International audienceThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits

    Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes

    Get PDF
    The UV photodegradation of protein-resistant poly(oligo(ethylene glycol) methacrylate) (POEGMA) bottle-brush films, grown on silicon oxide by surface-initiated atom radical transfer polymerization, was studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure to light with a wavelength of 244 nm caused a loss of polyether units from the brush structure and the creation of aldehyde groups that could be derivatized with amines. An increase was measured in the coefficient of friction of the photodegraded polymer brush compared to the native brush, attributed to the creation of a heterogeneous surface film, leading to increased energy dissipation through film deformation and the creation of new polar functional groups at the surface. Exposure of the films through a photomask yielded sharp, well-defined patterns. Analysis of topographical images showed that physical removal of material occurred during exposure, at a rate of 1.35 nm J−1 cm2. Using fluorescence microscopy, the adsorption of labeled proteins onto the exposed surfaces was studied. It was found that protein strongly adsorbed to exposed areas, while the masked regions retained their protein resistance. Exposure of the film to UV light from a scanning near-field optical microscope yielded submicrometer-scale patterns. These data indicate that a simple, rapid, one-step photoconversion of the poly(OEGMA) brush occurs that transforms it from a highly protein-resistant material to one that adsorbs protein and can covalently bind amine-containing molecules and that this photoconversion can be spatially addressed with high spatial resolution
    corecore