1,093 research outputs found

    On F-theory Quiver Models and Kac-Moody Algebras

    Full text link
    We discuss quiver gauge models with bi-fundamental and fundamental matter obtained from F-theory compactified on ALE spaces over a four dimensional base space. We focus on the base geometry which consists of intersecting F0=CP1xCP1 Hirzebruch complex surfaces arranged as Dynkin graphs classified by three kinds of Kac-Moody (KM) algebras: ordinary, i.e finite dimensional, affine and indefinite, in particular hyperbolic. We interpret the equations defining these three classes of generalized Lie algebras as the anomaly cancelation condition of the corresponding N =1 F-theory quivers in four dimensions. We analyze in some detail hyperbolic geometries obtained from the affine A base geometry by adding a node, and we find that it can be used to incorporate fundamental fields to a product of SU-type gauge groups and fields.Comment: 13 pages; new equations added in section 3, one reference added and typos correcte

    Developing an integrated approach to understanding the effects of climate change and other environmental alterations at a flyway level

    Get PDF
    The environmental consequences of global climate change are predicted to have their greatest effect at high latitudes and have great potential to impact fragile tundra ecosystems. The Arctic tundra is a vast biodiversity resource and provides breeding areas for many migratory geese. Importantly, tundra ecosystems also currently act as a global carbon “sink”, buffering carbon emissions from human activities. In January 2003, a new three year project was implemented to understand and model the interrelationships between goose population dynamics, conservation, European land use/agriculture and climate change. A range of potential future climate and land-use scenarios will be applied to the models and combined with information from field experiments on grazing and climate change in the Arctic. This paper describes the content of the research programme as well as issues in relation to engaging stakeholders with the project

    Developing an integrated approach to understanding the effects of climate change and other environmental alterations at a flyway level

    Get PDF
    The environmental consequences of global climate change are predicted to have their greatest effect at high latitudes and have great potential to impact fragile tundra ecosystems. The Arctic tundra is a vast biodiversity resource and provides breeding areas for many migratory geese. Importantly, tundra ecosystems also currently act as a global carbon “sink”, buffering carbon emissions from human activities. In January 2003, a new three year project was implemented to understand and model the interrelationships between goose population dynamics, conservation, European land use/agriculture and climate change. A range of potential future climate and land-use scenarios will be applied to the models and combined with information from field experiments on grazing and climate change in the Arctic. This paper describes the content of the research programme as well as issues in relation to engaging stakeholders with the project

    On Black Attractors in 8D and Heterotic/Type IIA Duality

    Full text link
    Motivated by the study of black attractors in 8D supergravity with 16 supersymmetries, we use the field theory approach and 8D supersymmetry with non trivial central charges to shed light on the exact duality between heterotic string on T^2 and type IIA on real connected and compact surfaces {\Sigma}2. We investigate the two constraints that should be obeyed by {\Sigma}2 and give their solutions in terms of intersecting 2-cycles as well their classification using Dynkin diagrams of affine Kac-Moody algebras. It is shown as well that the moduli space of these dual theories is given by SO(1,1)x((SO(2,r+2))/(SO(2)xSO(r+2))) where r stands for the rank of the gauge symmetry G_{r} of the 10D heterotic string on T^2. The remarkable cases r=-2,-1,0 as well as other features are also investigated.Comment: LaTex, 18 pages, 2 figures, To appear in JHE

    Constructing female entrepreneurship policy in the UK : is the US a relevant benchmark?

    Get PDF
    Successive UK governments have introduced a range of policy initiatives designed to encourage more women to start new firms. Underpinning these policies has been an explicit ambition for the UK to achieve similar participation rates as those in the US where it is widely reported that women own nearly half the stock of businesses. The data underlying these objectives are critically evaluated and it is argued that the definitions and measures of female enterprise used in the UK and the US restrict meaningful comparisons between the two. It is suggested that the expansion of female entrepreneurship in the US is historically and culturally specific to that country. UK policy goals should reflect the national socioeconomic context, while drawing upon good practice examples from a range of other countries. The paper concludes by discussing the economic and social viability of encouraging more women in the UK to enter self-employment without fully recognising the intensely competitive sectors in which they are often located

    Irreducible holonomy algebras of Riemannian supermanifolds

    Full text link
    Possible irreducible holonomy algebras \g\subset\osp(p,q|2m) of Riemannian supermanifolds under the assumption that \g is a direct sum of simple Lie superalgebras of classical type and possibly of a one-dimensional center are classified. This generalizes the classical result of Marcel Berger about the classification of irreducible holonomy algebras of pseudo-Riemannian manifolds.Comment: 27 pages, the final versio

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Altered mitochondrial bioenergetics are responsible for the delay in Wallerian degeneration observed in neonatal mice

    Get PDF
    Neurodegenerative and neuromuscular disorders can manifest throughout the lifespan of an individual, from infant to elderly individuals. Axonal and synaptic degeneration are early and critical elements of nearly all human neurodegenerative diseases and neural injury, however the molecular mechanisms which regulate this process are yet to be fully elucidated. Furthermore, how the molecular mechanisms governing degeneration are impacted by the age of the individual is poorly understood. Interestingly, in mice which are under 3 weeks of age, the degeneration of axons and synapses following hypoxic or traumatic injury is significantly slower. This process, known as Wallerian degeneration (WD), is a molecularly and morphologically distinct subtype of neurodegeneration by which axons and synapses undergo distinct fragmentation and death following a range of stimuli. In this study, we first use an ex-vivo model of axon injury to confirm the significant delay in WD in neonatal mice. We apply tandem mass-tagging quantitative proteomics to profile both nerve and muscle between P12 and P24 inclusive. Application of unbiased in silico workflows to relevant protein identifications highlights a steady elevation in oxidative phosphorylation cascades corresponding to the accelerated degeneration rate. We demonstrate that inhibition of Complex I prevents the axotomy-induced rise in reactive oxygen species and protects axons following injury. Furthermore, we reveal that pharmacological activation of oxidative phosphorylation significantly accelerates degeneration at the neuromuscular junction in neonatal mice. In summary, we reveal dramatic changes in the neuromuscular proteome during post-natal maturation of the neuromuscular system, and demonstrate that endogenous dynamics in mitochondrial bioenergetics during this time window have a functional impact upon regulating the stability of the neuromuscular system.</p
    corecore