1,387 research outputs found
Spin-density-wave transition of (TMTSF)PF at high magnetic fields
The transverse magnetoresistance of the Bechgaard salt (TMTSF)PF has
been measured for various pressures, with the field up to 24 T parallel to the
lowest conductivity direction c. A quadratic behavior is observed in
the magnetic field dependence of the spin-density-wave (SDW) transition
temperature . With increasing pressure,
decreases and the coefficient of the quadratic term increases. These results
are consistent with the prediction of the mean-field theory based on the
nesting of the quasi one-dimensional Fermi surface. Using a mean field theory,
for the perfect nesting case is estimated as about 16 K. This
means that even at ambient pressure where is 12 K, the SDW
phase of (TMTSF)PF is substantially suppressed by the
two-dimensionality of the system.Comment: 11pages,6figures(EPS), accepted for publication in PR
Electronic structure of NiSSe across the phase transition
We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across
the so-called metal-insulator transition as a function of temperature as well
as composition. The present results convincingly demonstrate that the low
temperature, antiferromagnetic phase is metallic, with a reduced density of
states at E. This decrease is possibly due to the opening of gaps along
specific directions in the Brillouin zone caused by the antiferromagnetic
ordering.Comment: Revtex, 4 pages, 3 postscript figure
Quantum oscillations in quasi-one-dimensional metals with spin-density-wave ground states
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2]
A Component Based Heuristic Search Method with Evolutionary Eliminations
Nurse rostering is a complex scheduling problem that affects hospital
personnel on a daily basis all over the world. This paper presents a new
component-based approach with evolutionary eliminations, for a nurse scheduling
problem arising at a major UK hospital. The main idea behind this technique is
to decompose a schedule into its components (i.e. the allocated shift pattern
of each nurse), and then to implement two evolutionary elimination strategies
mimicking natural selection and natural mutation process on these components
respectively to iteratively deliver better schedules. The worthiness of all
components in the schedule has to be continuously demonstrated in order for
them to remain there. This demonstration employs an evaluation function which
evaluates how well each component contributes towards the final objective. Two
elimination steps are then applied: the first elimination eliminates a number
of components that are deemed not worthy to stay in the current schedule; the
second elimination may also throw out, with a low level of probability, some
worthy components. The eliminated components are replenished with new ones
using a set of constructive heuristics using local optimality criteria.
Computational results using 52 data instances demonstrate the applicability of
the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure
Electronic structure of NiS_{1-x}Se_x
We investigate the electronic structure of the metallic NiSSe
system using various electron spectroscopic techniques. The band structure
results do not describe the details of the spectral features in the
experimental spectrum, even for this paramagnetic metallic phase. However, a
parameterized many-body multi-band model is found to be successful in
describing the Ni~2 core level and valence band, within the same model. The
asymmetric line shape as well as the weak intensity feature in the Ni~2 core
level spectrum has been ascribed to extrinsic loss processes in the system. The
presence of satellite features in the valence band spectrum shows the existence
of the lower Hubbard band, deep inside the metallic regime, consistent
with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure
Quantum Hall Transitions in (TMTSF)PF
We have studied the temperature dependence of the integer quantum Hall
transitions in the molecular crystal (TMTSF)PF. We find that the
transition width between the quantum Hall plateaus does not exhibit the
universal power-law scaling behavior of the integer quantum Hall effect
observed in semiconducting devices. Instead, the slope of the
risers, , and the (inverse) width of the peaks,
, show a BCS-like energy gap temperature dependence. We
discuss these results in terms of the field-induced spin-density wave gap and
order parameter of the system.Comment: 10 pages, RevTeX, 4 PostScript figure
SDW and FISDW transition of (TMTSF)ClO at high magnetic fields
The magnetic field dependence of the SDW transition in (TMTSF)ClO for
various anion cooling rates has been measured, with the field up to 27T
parallel to the lowest conductivity direction . For quenched
(TMTSF)ClO, the SDW transition temperature increases
from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed
below 18T, followed by a saturation behavior. These results are consistent with
the prediction of the mean-field theory. From these behaviors,
is estimated as =13.5K for the perfect nesting case. This
indicates that the SDW phase in quenched (TMTSF)ClO, where is less than 6K, is strongly suppressed by the two-dimensionality of
the system. In the intermediate cooled state in which the SDW phase does not
appear in zero field, the transition temperature for the field-induced SDW
shows a quadratic behavior above 12T and there is no saturation behavior even
at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can
probably be attributed to the difference of the dimerized gap due to anion
ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR
Interactions of Bacillus Mojavensis and Fusarium Verticillioides With a Benzoxazolinone (Boa) and Its Transformation Product, Apo
En:Journal of Chemical Ecology (2007, vol. 33, n. 10, p. 1885-1897)The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study.
=580 $aEn:Journal of Chemical Ecolog
Classtalk: A Classroom Communication System for Active Learning
This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional
- …
