929 research outputs found
Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection
Interstitial pneumonia linked with reactivation of latent human cytomegalovirus due to iatrogenic immunosuppression can be a serious complication of bone marrow transplantation therapy of aplastic anaemia and acute leukaemia1. Cellular immunity plays a critical role in the immune surveillance of inapparent cytomegalovirus infections in man and the mouse1−7. The molecular basis of latency, however, and the interaction between latently or recurrently infected cells and the immune system of the host are poorfy understood. We have detected a so far unknown antigen in the mouse model. This antigen is found in infected cells in association with the expression of the herpesvirus 'immediate early' genes and is recognized by cytolytic T lymphocytes (CTL)8. We now demonstrate that an unexpectedly high proportion of the CTL precursors generated in vivo during acute murine cytomegalovirus infection are specific for cells that selectively synthesize immediate early proteins, indicating an immunodominant role of viral non-structural proteins
Cross-coupling methodology in the synthesis of luminescent metal complexes and multimetallic assemblies
The synthesis of a series of complexes of the type [M(C^N)2(N^N)]+ is reported, where M is either iridium or rhodium, C^N is a cyclometalating ligand such as 2-phenylpyridine (ppy) and N^N is 2,2'-bipyridme (bpy) or a substituted bpy ligand. Several complexes are produced via an in situ Suzuki cross-coupling reaction between a bromo-substituted metal complex and an organic boronic acid. The introduction of fluoro-substituents in the C^N ligand is found to significantly perturb the excited state properties of such complexes, whilst species containing bpy ligands appended with dimethylamino, pyridyl or hydroxy functionalities display pH responsive photophysical properties. The Suzuki cross-coupling reaction is further extended to the controlled synthesis of multimetallic arrays containing from two to eight metal centres. This is achieved via the coupling of bromo-substituted metal complexes with previously unreported ruthenium, iridium or rhodium complexes bearing bpy ligands with boronic acid substituents. The regioselective brominatìon of ppy ligands already bound to metal centres allows for the elaboration of dimeric systems to tetrameric systems, and tetrameric systems to octameric systems by exploiting the same coupling reaction. Access to well-defined mixed metal species is achieved, including a tetrameric species which incorporates rhodium, iridium and ruthenium moieties. Similarly, imsymmetrical bridging units are simply created and can contain either bpy, ppy or 2,2':6',2"-terpyridine (tpy) coordinating units. Photophysical investigations reveal that the energy transfer properties of these multimetallic assemblies, which contain simple phenyl bridging units between the bpy, ppy or tpy ligands, can be reliably predicted from the properties of the constituent building blocks. That is to say that the bridging ligand does not alter the relative excited state energies of the complexes when they are incorporated as building blocks in extended systems. This allows for the design of energy-channelling multimetallic species, potentially applicable to solar energy conversion devices
Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction-stir bar sorptive extraction-derivatization and gas chromatography-mass spectrometry
This work describes the development, optimiza-
tion, and validation of a new method for the simultaneous
determination of a wide range of pharmaceuticals (beta-
blockers, lipid regulators
...
) and personal care products
(fragrances, UV filters, phthalates
...
) in both aqueous and
solid environmental matrices. Target compounds were
extracted from sediments using pressurized hot water ex-
traction followed by stir bar sorptive extraction. The first
stage was performed at 1,500 psi during three static extrac-
tion cycles of 5 min each after optimizing the extraction
temperature (50
–
150 °C) and addition of organic modifiers
(% methanol) to water, the extraction solvent. Next, aqueous
extracts and water samples were processed using polydime-
thylsiloxane bars. Several parameters were optimized for
this technique, including extraction and desorption time,
ionic strength, presence of organic modifiers, and pH. Fi-
nally, analytes were extracted from the bars by ultrasonic
irradiation using a reduced amount of solvent (0.2 mL) prior
to derivatization and gas chromatography
–
mass spectrome-
try analysis. The optimized protocol uses minimal amounts
of organic solvents (<10 mL/sample) and time (
≈
8 h/sam-
ple) compared to previous ex
isting methodologies. Low
standard deviation (usually below 10 %) and limits of de-
tection (sub-ppb) vouch for the applicability of the method-
ology for the analysis of target compounds at trace levels.
Once developed, the method was applied to determin
Sedimentation and organic content in the mires and other sites of sediment accumulation in the Sydney region, eastern Australia, in the period after the Last Glacial Maximum
This research reports on a synthesis of radiocarbon (14C) dates and the organic content from a variety of depositional sites in a relatively small region in humid eastern Australia centred on Sydney. We focused on basal dates, changes in accumulation rates and the organic content of these sediment records in the period post-dating 21 thousand years ago to make inferences about past environmental conditions, or to infer the timing of past environmental change. We found that low rates of sediment and organic accumulation at the Last Glacial Maximum continued well into the late Pleistocene. The average rate of sediment deposition and organic content increased from about 14.5 calibrated kiloanni before present (cal ka BP), perhaps coincident with Meltwater Pulse 1A, but this was then checked by dry conditions during the Antarctic Climatic Reversal chronozone. An abrupt increase in the average rate of sediment accumulation coincided with the Pleistocene-Holocene boundary (at 11.7 cal ka BP), and this continued until about 9.2 cal ka BP, largely coinciding with the Antarctic thermal maximum, and probably reflecting reduced moisture availability in the Sydney region. Indication of depressed temperature and a more positive moisture availability, from about 9 to 7.6 cal ka BP, witnessed the fastest increase in the number of sites than at any other time. An overall drier early Holocene abruptly altered at about 7.5 cal ka BP and a mid-Holocene ‘optimum’ in moisture availability extended to 6.2 cal ka BP. The compilation of organic contents of the mid-late Holocene suggests environmental variability, but El Niño frequency or strength is not implicated as a driving force. Increased organic productivity, especially after 2.8 cal ka BP, corresponded to a peak in summer insolation, and associated seasonality of insolation and this is likely to have resulted in increased, or more consistent, summer rainfall and easterly air flow into the Sydney region. In contrast to previous generalisations about changes in south-eastern Australia during the Holocene, which have often relied on palaeoenvironmental records from further south, the southward migration of the intertropical convergence zone during the Holocene had vastly different synoptic outcomes in the Sydney region, with the early Holocene drier as continental air dominated, and the late Holocene wetter, as the synoptic conditions saw more tropical and easterly airflow. This work demonstrates the danger in making generalisations across regions and highlights the utility of the compilation of data at a homoclimatic, regional scale
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
道徳と幸福 : カント倫理思想の一考察
Asthma is a serious health problem and during the last decade various experimental models of asthma have been developed to study the pathogenesis of this disease. In this study we describe a new mouse model of asthma that uses the spores of Alternaria alternata and Cladosporium herbarum, two allergenic molds recognized as common inducers of rhinitis and asthma in humans. Here we demonstrate that A. alternata and C. herbarum spores are immunogenic when injected into BALB/c mice, and induce the production of specific IgM and IgG1 antibodies and strongly increase IgE serum levels. To induce the allergic response, mice were sensitized by two intraperitoneal (i.p.) injections and then intranasaly (i.n.) challenged with A. alternata and C. herbarum spores. Bronchoalveolar lavages (BALs) from these mice contained numerous macrophages, neutrophils, eosinophils and lymphocytes whereas neutrophils were the predominant BAL inflammatory cells in nonsensitized mice. Histological studies demonstrated an influx of eosinophils in peri-vascular and peri-bronchial areas and the presence of numerous epithelial goblet cells only in sensitized mice. Increased expression of mRNA specific for various chemokines (eotaxin, MIP-1α, MIP-2) and chemokine receptors (CCR-1, CCR-2 and CCR-5) was observed in the lungs of nonsensitized mice challenged with the spores. Expression of CCR-3 mRNA in the lungs and Th2 cytokine (IL-4, IL-5 and IL-13) secretion in the BAL was additionally observed in sensitized and challenged mice. Finally we demonstrate through whole-body plethysmography that mold spore sensitization and challenge induce the development of an airway hyperreactivity in response to nebulized methacholine
Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases
Synthesising practice guidelines for the development of community-based exercise programmes after stroke
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Multiple guidelines are often available to inform practice in complex interventions. Guidance implementation may be facilitated if it is tailored to particular clinical issues and contexts. It should also aim to specify all elements of interventions that may mediate and modify effectiveness, including both their content and delivery. We conducted a focused synthesis of recommendations from stroke practice guidelines to produce a structured and comprehensive account to facilitate the development of community-based exercise programmes after stroke.National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsul
Recommended from our members
Neuromotor tolerability and behavioural characterisation of cannabidiolic acid, a phytocannabinoid with therapeutic potential for anticipatory nausea
Rationale:
Anticipatory nausea (AN) is a poorly controlled side-effect experienced by chemotherapy patients. Currently, pharmacotherapy is restricted to benzodiazepine anxiolytics, which have limited efficacy, significant sedative effects, and induce dependency. The non-psychoactive phytocannabinoid, cannabidiolic acid (CBDA), has shown considerable efficacy in pre-clinical AN models, however determination of its neuromotor tolerability profile is crucial to justify clinical investigation. Provisional evidence for appetite-stimulating properties also requires detailed investigation.
Objectives:
To assess the tolerability of CBDA in locomotor activity, motor coordination and muscular strength tests, and additionally for ability to modulate feeding behaviours.
Methods:
Male Lister hooded rats administered CBDA (0.05-5 mg/kg; p.o.) were assessed in habituated open field (for locomotor activity), static beam and grip strength tests. A further study investigated whether these CBDA doses modulated normal feeding behaviour. Finally, evidence of anxiolytic-like effects in the habituated open field prompted testing of 5 mg/kg CBDA for anxiolytic-like activity in unhabituated open field, light/dark box and novelty-supressed feeding (NSF) tests.
Results:
CBDA had no adverse effects upon performance in any neuromotor tolerability test, however anxiolytic-like behaviour was observed in the habituated open field. Normal feeding behaviours were unaffected by any dose. CBDA (5 mg/kg) abolished the increased feeding latency in the NSF test induced by the 5-HT1AR antagonist, WAY-100,635, indicative of anxiolytic-like effects, but had no effect on anxiety-like behaviour in the novel open field or light/dark box.
Conclusions:
CBDA is very well tolerated and devoid of the sedative side-effect profile of benzodiazepines, justifying its clinical investigation as a novel AN treatment
- …
