124 research outputs found

    Entangled symmetric states of N qubits with all positive partial transpositions

    Full text link
    From both theoretical and experimental points of view symmetric states constitute an important class of multipartite states. Still, entanglement properties of these states, in particular those with positive partial transposition (PPT), lack a systematic study. Aiming at filling in this gap, we have recently affirmatively answered the open question of existence of four-qubit entangled symmetric states with positive partial transposition and thoroughly characterized entanglement properties of such states [J. Tura et al., Phys. Rev. A 85, 060302(R) (2012)] With the present contribution we continue on characterizing PPT entangled symmetric states. On the one hand, we present all the results of our previous work in a detailed way. On the other hand, we generalize them to systems consisting of arbitrary number of qubits. In particular, we provide criteria for separability of such states formulated in terms of their ranks. Interestingly, for most of the cases, the symmetric states are either separable or typically separable. Then, edge states in these systems are studied, showing in particular that to characterize generic PPT entangled states with four and five qubits, it is enough to study only those that assume few (respectively, two and three) specific configurations of ranks. Finally, we numerically search for extremal PPT entangled states in such systems consisting of up to 23 qubits. One can clearly notice regularity behind the ranks of such extremal states, and, in particular, for systems composed of odd number of qubits we find a single configuration of ranks for which there are extremal states.Comment: 16 pages, typos corrected, some other improvements, extension of arXiv:1203.371

    Entanglement and nonlocality are inequivalent for any number of particles

    Get PDF
    Understanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that the correlations observed for some entangled quantum states can be explained within the framework of local models, thus proving that these resources are inequivalent in this scenario. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such relation in multipartite systems. We provide a general construction of genuinely multipartite entangled states that do not display genuinely multipartite nonlocality, thus proving that entanglement and nonlocality are inequivalent for any number of particles.Comment: submitted version, 7 pages (4.25 + appendix), 1 figur

    Translationally invariant multipartite Bell inequalities involving only two-body correlators

    Full text link
    Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three and four-partite Bell inequalities constructed from one and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality.Comment: 21 pages, to be published in the special issue of JPA "50 years of Bell's theorem

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4log2d4 log_2 d bits, can be certified from a pair of entangled particles of dimension dd. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence.Comment: 4 + 5 pages (1 + 3 images), published versio

    Detecting non-locality in multipartite quantum systems with two-body correlation functions

    Full text link
    Bell inequalities define experimentally observable quantities to detect non-locality. In general, they involve correlation functions of all the parties. Unfortunately, these measurements are hard to implement for systems consisting of many constituents, where only few-body correlation functions are accessible. Here we demonstrate that higher-order correlation functions are not necessary to certify nonlocality in multipartite quantum states by constructing Bell inequalities from one- and two-body correlation functions for an arbitrary number of parties. The obtained inequalities are violated by some of the Dicke states, which arise naturally in many-body physics as the ground states of the two-body Lipkin-Meshkov-Glick Hamiltonian.Comment: 10 pages, 2 figures, 1 tabl

    Four-qubit entangled symmetric states with positive partial transpositions

    Full text link
    We solve the open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.Comment: 5+4 pages, improved version, title slightly modifie

    Nonlocality in many-body quantum systems detected with two-body correlators

    Get PDF
    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, "theorist- and experimentalist-friendly" many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Science 344, 1256 (2014)]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states---ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.Comment: 46 pages (25.2 + appendices), 7 figure

    Exploring the Local Orthogonality Principle

    Full text link
    Nonlocality is arguably one of the most fundamental and counterintuitive aspects of quantum theory. Nonlocal correlations could, however, be even more nonlocal than quantum theory allows, while still complying with basic physical principles such as no-signaling. So why is quantum mechanics not as nonlocal as it could be? Are there other physical or information-theoretic principles which prohibit this? So far, the proposed answers to this question have been only partially successful, partly because they are lacking genuinely multipartite formulations. In Nat. Comm. 4, 2263 (2013) we introduced the principle of Local Orthogonality (LO), an intrinsically multipartite principle which is satisfied by quantum mechanics but is violated by non-physical correlations. Here we further explore the LO principle, presenting new results and explaining some of its subtleties. In particular, we show that the set of no-signaling boxes satisfying LO is closed under wirings, present a classification of all LO inequalities in certain scenarios, show that all extremal tripartite boxes with two binary measurements per party violate LO, and explain the connection between LO inequalities and unextendible product bases.Comment: Typos corrected; data files uploade
    corecore