1,026 research outputs found
Aerodynamic noise from rigid trailing edges with finite porous extensions
This paper investigates the effects of finite flat porous extensions to
semi-infinite impermeable flat plates in an attempt to control trailing-edge
noise through bio-inspired adaptations. Specifically the problem of sound
generated by a gust convecting in uniform mean steady flow scattering off the
trailing edge and permeable-impermeable junction is considered. This setup
supposes that any realistic trailing-edge adaptation to a blade would be
sufficiently small so that the turbulent boundary layer encapsulates both the
porous edge and the permeable-impermeable junction, and therefore the
interaction of acoustics generated at these two discontinuous boundaries is
important. The acoustic problem is tackled analytically through use of the
Wiener-Hopf method. A two-dimensional matrix Wiener-Hopf problem arises due to
the two interaction points (the trailing edge and the permeable-impermeable
junction). This paper discusses a new iterative method for solving this matrix
Wiener-Hopf equation which extends to further two-dimensional problems in
particular those involving analytic terms that exponentially grow in the upper
or lower half planes. This method is an extension of the commonly used "pole
removal" technique and avoids the needs for full matrix factorisation.
Convergence of this iterative method to an exact solution is shown to be
particularly fast when terms neglected in the second step are formally smaller
than all other terms retained. The final acoustic solution highlights the
effects of the permeable-impermeable junction on the generated noise, in
particular how this junction affects the far-field noise generated by
high-frequency gusts by creating an interference to typical trailing-edge
scattering. This effect results in partially porous plates predicting a lower
noise reduction than fully porous plates when compared to fully impermeable
plates.Comment: LaTeX, 20 pp., 19 graphics in 6 figure
Generalised Fluctuation Formula
We develop a General Fluctuation Formula for phase variables that are odd
under time reversal. Simulations are used to verify the new formula.Comment: 10 pages, 5 figures, submitted to Procedings of the 3rd Tohwa
University International Conference of Statistical Physics, Nov 8-12, 1999
(AIP Conferences Series
Recommended from our members
Terrorism, Dread Risk and Bicycle Accidents
Following the airplane attacks of September 11th, 2001 it is claimed that many Americans, dreading a repeat of these events, drove instead of flying, and that, consequently, there were extra car accidents, increasing the number of fatalities directly caused by the attacks by 1,500. After the Madrid train bombings of March 11th, 2004, Spaniards, like Americans, avoided the attacked mode of travel, but no increase in car travel or fatal accidents resulted. Here we analyze behavioral concomitants of the July 7th 2005 bomb attacks on public transport in London. We find reduced underground train travel and an increase in rates of bicycling and, over the 6 months following the attacks, 214 additional bicyclist road casualties - a 15.4% increase. Nevertheless we found no detectable increase in car accidents. We conclude that, while fear caused by terrorism may initiate potentially dangerous behaviors, understanding the secondary effects of terrorism requires consideration of the environmental variables that enable fear to manifest in dangerous behaviors
Measuring Nonequilibrium Temperature of Forced Oscillators
The meaning of temperature in nonequilibrium thermodynamics is considered by
using a forced harmonic oscillator in a heat bath, where we have two effective
temperatures for the position and the momentum, respectively. We invent a
concrete model of a thermometer to testify the validity of these different
temperatures from the operational point of view. It is found that the measured
temperature depends on a specific form of interaction between the system and a
thermometer, which means the zeroth law of thermodynamics cannot be immediately
extended to nonequilibrium cases.Comment: 8 page
Orientational Ordering in Spatially Disordered Dipolar Systems
This letter addresses basic questions concerning ferroelectric order in
positionally disordered dipolar materials. Three models distinguished by dipole
vectors which have one, two or three components are studied by computer
simulation. Randomly frozen and dynamically disordered media are considered. It
is shown that ferroelectric order is possible in spatially random systems, but
that its existence is very sensitive to the dipole vector dimensionality and
the motion of the medium. A physical analysis of our results provides
significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from
[email protected]
Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems
In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly
discussed the existence and nature of ferroelectric order in positionally
disordered dipolar materials. Here we report further results and give a
complete description of our work. Simulations of randomly frozen and
dynamically disordered dipolar soft spheres are used to study ferroelectric
ordering in non-crystalline systems. We also give a physical interpretation of
the simulation results in terms of short- and long-range interactions. Cases
where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models,
respectively) are considered. It is found that the Ising model displays
ferroelectric phases in frozen amorphous systems, while the XY and XYZ models
form dipolar glass phases at low temperatures. In the dynamically disordered
model the equations of motion are decoupled such that particle translation is
completely independent of the dipolar forces. These systems spontaneously
develop long-range ferroelectric order at nonzero temperature despite the
absence of any fined-tuned short-range spatial correlations favoring dipolar
order. Furthermore, since this is a nonequilibrium model we find that the
paraelectric to ferroelectric transition depends on the particle mass. For the
XY and XYZ models, the critical temperatures extrapolate to zero as the mass of
the particle becomes infinite, whereas, for the Ising model the critical
temperature is almost independent of mass and coincides with the ferroelectric
transition found for the randomly frozen system at the same density. Thus in
the infinite mass limit the results of the frozen amorphous systems are
recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed.
Submitted to Phisical Review E. Contact: [email protected]
Recommended from our members
Retrospective Evaluations of Sequences: Testing the Predictions of a Memory-based Analysis
Retrospective evaluation (RE) of event sequences are known to be biased in various ways. The present paper presents a series of studies that examined the suggestion that the moments that are the most accessible in memory at the point of RE contribute to these biases. As predicted by this memory-based analysis, Experiment 1 showed that pleasantness ratings of word lists were biased by the presentation position of a negative item and by how easy the negative information was to retrieve. Experiment 2 ruled out the hypothesis that these findings were due to the dual nature of the task called upon. Experiment 3 further manipulated the memorability of the negative items—and corresponding changes in RE were as predicted. Finally, Experiment 4 extended the findings to more complex stimuli involving event narratives. Overall, the results suggest that assessments were adjusted based on the retrieval of the most readily available information
RESPOND – A patient-centred programme to prevent secondary falls in older people presenting to the emergency department with a fall: Protocol for a mixed methods programme evaluation.
Background Programme evaluations conducted alongside randomised controlled trials (RCTs) have potential to enhance understanding of trial outcomes. This paper describes a multi-level programme evaluation to be conducted alongside an RCT of a falls prevention programme (RESPOND). Objectives 1) To conduct a process evaluation in order to identify the degree of implementation fidelity and associated barriers and facilitators. 2) To evaluate the primary intended impact of the programme: participation in fall prevention strategies, and the factors influencing participation. 3) To identify the factors influencing RESPOND RCT outcomes: falls, fall injuries and ED re-presentations. Methods/ Design Five hundred and twenty eight community-dwelling adults aged 60–90 years presenting to two EDs with a fall will be recruited and randomly assigned to the intervention or standard care group. All RESPOND participants and RESPOND clinicians will be included in the evaluation. A mixed methods design will be used and a programme logic model will frame the evaluation. Data will be sourced from interviews, focus groups, questionnaires, clinician case notes, recruitment records, participant-completed calendars, hospital administrative datasets, and audio-recordings of intervention contacts. Quantitative data will be analysed via descriptive and inferential statistics and qualitative data will be interpreted using thematic analysis. Discussion The RESPOND programme evaluation will provide information about contextual and influencing factors related to the RCT outcomes. The results will assist researchers, clinicians, and policy makers to make decisions about future falls prevention interventions. Insights gained are likely to be transferable to preventive health programmes for a range of chronic conditions
- …
