33,369 research outputs found

    Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors

    Full text link
    We study a model of a d-wave superconductor with strong potential scatterers in the presence of antiferromagnetic correlations and apply it to experimental nuclear magnetic resonance (NMR) results on Zn impurities in the superconducting state of YBCO. We then focus on the contribution of impurity-induced paramagnetic moments, with Hubbard correlations in the host system accounted for in Hartree approximation. We show that local magnetism around individual impurities broadens the line, but quasiparticle interference between impurity states plays an important role in smearing out impurity satellite peaks. The model, together with estimates of vortex lattice effects, provides a semi-quantitative description of the impurity concentration dependence of the NMR line shape in the superconducting state, and gives a qualitative description of the temperature dependence of the line asymmetry. We argue that impurity-induced paramagnetism and resonant local density of states effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.

    Robustness of the nodal d-wave spectrum to strongly fluctuating competing order

    Full text link
    We resolve an existing controversy between, on the one hand, convincing evidence for the existence of competing order in underdoped cuprates, and, on the other hand, spectroscopic data consistent with a seemingly homogeneous d-wave superconductor in the very same compounds. Specifically, we show how short-range fluctuations of the competing order essentially restore the nodal d-wave spectrum from the qualitatively distinct folded dispersion resulting from homogeneous coexisting phases. The signatures of the fluctuating competing order can be found mainly in a splitting of the antinodal quasi-particles and, depending of the strength of the competing order, also in small induced nodal gaps as found in recent experiments on underdoped La{2-x}SrxCuO4.Comment: 5 pages, 4 figure

    Time-Dependent Random Walks and the Theory of Complex Adaptive Systems

    Full text link
    Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are {\it time-dependent}. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure

    Superconducting phase diagram of itinerant antiferromagnets

    Full text link
    We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant dx2y2d_{x^2-y^2}-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a pp-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor pp-wave pairing compared to dx2y2d_{x^2-y^2}. The sub-leading pair instability is found to be in the gg-wave channel, but complex admixtures of dd and gg are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of dx2y2d_{x^2-y^2} structure and similar gap magnitude. In conclusion, the dx2y2d_{x^2-y^2} gap dominates for both hole and electron doping inside the spin-density-wave phase.Comment: 14 pages, 9 figure

    The mass content of the Sculptor dwarf spheroidal galaxy

    Full text link
    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the modelling of pressure-supported stellar systems.Comment: 6 pages, 3 figures. To appear in the proceedings of IAU Symposium 254 "The Galaxy disk in a cosmological context", Copenhagen, June 200

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    Mass Expansions of Screened Perturbation Theory

    Get PDF
    The thermodynamics of massless phi^4-theory is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We analytically calculate the pressure and entropy to three-loop order and the screening mass to two-loop order, expanding in powers of m/T. The truncated m/T-expansion results are compared with numerical SPT results for the pressure, entropy and screening mass which are accurate to all orders in m/T. It is shown that the m/T-expansion converges quickly and provides an accurate description of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure

    Pinning of stripes by local structural distortions in cuprate high-Tc superconductors

    Full text link
    We study the spin-density wave (stripe) instability in lattices with mixed low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal symmetry. Within an explicit mean-field model it is shown how local LTT regions act as pinning centers for static stripe formation. We calculate the modulations in the local density of states near these local stripe regions and find that mainly the coherence peaks and the van Hove singularity (VHS) are spatially modulated. Lastly, we use the real-space approach to simulate recent tunneling data in the overdoped regime where the VHS has been detected by utilizing local normal state regions.Comment: Conference proceedings for Stripes1
    corecore