33,369 research outputs found
Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors
We study a model of a d-wave superconductor with strong potential scatterers
in the presence of antiferromagnetic correlations and apply it to experimental
nuclear magnetic resonance (NMR) results on Zn impurities in the
superconducting state of YBCO. We then focus on the contribution of
impurity-induced paramagnetic moments, with Hubbard correlations in the host
system accounted for in Hartree approximation. We show that local magnetism
around individual impurities broadens the line, but quasiparticle interference
between impurity states plays an important role in smearing out impurity
satellite peaks. The model, together with estimates of vortex lattice effects,
provides a semi-quantitative description of the impurity concentration
dependence of the NMR line shape in the superconducting state, and gives a
qualitative description of the temperature dependence of the line asymmetry. We
argue that impurity-induced paramagnetism and resonant local density of states
effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.
Robustness of the nodal d-wave spectrum to strongly fluctuating competing order
We resolve an existing controversy between, on the one hand, convincing
evidence for the existence of competing order in underdoped cuprates, and, on
the other hand, spectroscopic data consistent with a seemingly homogeneous
d-wave superconductor in the very same compounds. Specifically, we show how
short-range fluctuations of the competing order essentially restore the nodal
d-wave spectrum from the qualitatively distinct folded dispersion resulting
from homogeneous coexisting phases. The signatures of the fluctuating competing
order can be found mainly in a splitting of the antinodal quasi-particles and,
depending of the strength of the competing order, also in small induced nodal
gaps as found in recent experiments on underdoped La{2-x}SrxCuO4.Comment: 5 pages, 4 figure
Time-Dependent Random Walks and the Theory of Complex Adaptive Systems
Motivated by novel results in the theory of complex adaptive systems, we
analyze the dynamics of random walks in which the jumping probabilities are
{\it time-dependent}. We determine the survival probability in the presence of
an absorbing boundary. For an unbiased walk the survival probability is
maximized in the case of large temporal oscillations in the jumping
probabilities. On the other hand, a random walker who is drifted towards the
absorbing boundary performs best with a constant jumping probability. We use
the results to reveal the underlying dynamics responsible for the phenomenon of
self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure
Superconducting phase diagram of itinerant antiferromagnets
We study the phase diagram of the Hubbard model in the weak-coupling limit
for coexisting spin-density-wave order and spin-fluctuation-mediated
superconductivity. Both longitudinal and transverse spin fluctuations
contribute significantly to the effective interaction potential, which creates
Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We
find a dominant -wave solution in both electron- and hole-doped
cases. In the quasi-spin triplet channel, the longitudinal fluctuations give
rise to an effective attraction supporting a -wave gap, but are overcome by
repulsive contributions from the transverse fluctuations which disfavor
-wave pairing compared to . The sub-leading pair instability is
found to be in the -wave channel, but complex admixtures of and are
not energetically favored since their nodal structures coincide. Inclusion of
interband pairing, in which each fermion in the Cooper pair belongs to a
different spin-density-wave band, is considered for a range of electron dopings
in the regime of well-developed magnetic order. We demonstrate that these
interband pairing gaps, which are non-zero in the magnetic state, must have the
same parity under inversion as the normal intraband gaps. The self-consistent
solution to the full system of five coupled gap equations give intraband and
interband pairing gaps of structure and similar gap magnitude. In
conclusion, the gap dominates for both hole and electron doping
inside the spin-density-wave phase.Comment: 14 pages, 9 figure
The mass content of the Sculptor dwarf spheroidal galaxy
We present a new determination of the mass content of the Sculptor dwarf
spheroidal galaxy, based on a novel approach which takes into account the two
distinct stellar populations present in this galaxy. This method helps to
partially break the well-known mass-anisotropy degeneracy present in the
modelling of pressure-supported stellar systems.Comment: 6 pages, 3 figures. To appear in the proceedings of IAU Symposium 254
"The Galaxy disk in a cosmological context", Copenhagen, June 200
Screened Perturbation Theory to Three Loops
The thermal physics of a massless scalar field with a phi^4 interaction is
studied within screened perturbation theory (SPT). In this method the
perturbative expansion is reorganized by adding and subtracting a mass term in
the lagrangian. We consider several different mass prescriptions that
generalize the one-loop gap equation to two-loop order. We calculate the
pressure and entropy to three-loop order and the screening mass to two-loop
order. In contrast to the weak-coupling expansion, the SPT-improved
approximations appear to converge even for rather large values of the coupling
constant.Comment: 30 pages, 10 figure
Mass Expansions of Screened Perturbation Theory
The thermodynamics of massless phi^4-theory is studied within screened
perturbation theory (SPT). In this method the perturbative expansion is
reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the
screening mass to two-loop order, expanding in powers of m/T. The truncated
m/T-expansion results are compared with numerical SPT results for the pressure,
entropy and screening mass which are accurate to all orders in m/T. It is shown
that the m/T-expansion converges quickly and provides an accurate description
of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
Pinning of stripes by local structural distortions in cuprate high-Tc superconductors
We study the spin-density wave (stripe) instability in lattices with mixed
low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal
symmetry. Within an explicit mean-field model it is shown how local LTT regions
act as pinning centers for static stripe formation. We calculate the
modulations in the local density of states near these local stripe regions and
find that mainly the coherence peaks and the van Hove singularity (VHS) are
spatially modulated. Lastly, we use the real-space approach to simulate recent
tunneling data in the overdoped regime where the VHS has been detected by
utilizing local normal state regions.Comment: Conference proceedings for Stripes1
- …
