12,562 research outputs found
Monte Carlo simulation of baryon and lepton number violating processes at high energies
We report results obtained with the first complete event generator for
electroweak baryon and lepton number violating interactions at supercolliders.
We find that baryon number violation would be very difficult to establish, but
lepton number violation can be seen provided at least a few hundred L violating
events are available with good electron or muon identification in the energy
range 10 GeV to 1 TeV.Comment: 40 Pages uuencoded LaTeX (20 PostScript figures included),
Cavendish-HEP-93/6, CERN-TH.7090/9
Pion Charge Exchange on Deuterium
We investigate quantum corrections to a classical intranuclear cascade
simulation of pion single charge exchange on the deuteron. In order to separate
various effects the orders of scattering need to be distinguished and, to that
end, we develop signals for each order of scattering corresponding to
quasi-free conditions. Quantum corrections are evaluated for double scattering
and are found to be large. Global agreement with the data is good.Comment: 30 pages, 12 figure
Estimation of Kalman filter model parameters from an ensemble of tests
A methodology for estimating initial mean and covariance parameters in a Kalman filter model from an ensemble of nonidentical tests is presented. In addition, the problem of estimating time constants and process noise levels is addressed. Practical problems such as developing and validating inertial instrument error models from laboratory test data or developing error models of individual phases of a test are generally considered
Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3
We present a magnetoresistive-photoresistive device based on the interaction
of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that
undergoes light-induced strain. The magnitude of the resistance and
magnetoresistance in the CoFe film can be controlled by the wavelength of the
incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic
magnetoresistance is detected due to an additional magnetoelastic contribution
to magnetic anisotropy of the CoFe film. This effect may find applications in
photo-sensing systems, wavelength detectors and can possibly open a research
development in light-controlled magnetic switching properties for next
generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape
Stable Kalman filters for processing clock measurement data
Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given
Generalized Phase Rules
For a multi-component system, general formulas are derived for the dimension
of a coexisting region in the phase diagram in various state spaces.Comment: In the revised manuscript, physical meanings of D's are explained by
adding three figures. 10 pages, 3 figure
Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities
The Partition function of two Hard Spheres in a Hard Wall Pore is studied
appealing to a graph representation. The exact evaluation of the canonical
partition function, and the one-body distribution function, in three different
shaped pores are achieved. The analyzed simple geometries are the cuboidal,
cylindrical and ellipsoidal cavities. Results have been compared with two
previously studied geometries, the spherical pore and the spherical pore with a
hard core. The search of common features in the analytic structure of the
partition functions in terms of their length parameters and their volumes,
surface area, edges length and curvatures is addressed too. A general framework
for the exact thermodynamic analysis of systems with few and many particles in
terms of a set of thermodynamic measures is discussed. We found that an exact
thermodynamic description is feasible based in the adoption of an adequate set
of measures and the search of the free energy dependence on the adopted measure
set. A relation similar to the Laplace equation for the fluid-vapor interface
is obtained which express the equilibrium between magnitudes that in extended
systems are intensive variables. This exact description is applied to study the
thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the
analyzed different geometries. We obtain analytically the external work, the
pressure on the wall, the pressure in the homogeneous zone, the wall-fluid
surface tension, the line tension and other similar properties
Solution phase, solid state, and theoretical investigations on the MacMillan imidazolidinone
A combination of soln. phase NMR, X-ray crystallog. studies, and DFT calcns. provide a consistent structural conformation for iminium ions derived from the MacMillan imidazolidinone
#Funeral and Instagram: death, social media, and platform vernacular
© 2014, © 2014 Taylor & Francis. This paper presents findings from a study of Instagram use and funerary practices that analysed photographs shared on public profiles tagged with ‘#funeral’. We found that the majority of images uploaded with the hashtag #funeral often communicated a person's emotional circumstances and affective context, and allowed them to reposition their funeral experience amongst wider networks of acquaintances, friends, and family. We argue that photo-sharing through Instagram echoes broader shifts in commemorative and memorialization practices, moving away from formal and institutionalized rituals to informal and personalized, vernacular practices. Finally, we consider how Instagram's ‘platform vernacular’ unfolds in relation to traditions and contexts of death, mourning, and memorialization. This research contributes to a broader understanding of how platform vernaculars are shaped through the logics of architecture and use. This research also directly contributes to the understanding of death and digital media by examining how social media is being mobilized in relation to death, the differences that different media platforms make, and the ways social media are increasingly entwined with the places, events, and rituals of mourning
- …
