52,572 research outputs found
Affymetrix probes containing runs of contiguous guanines are not gene-specific
High Density Oligonucleotide arrays (HDONAs), such as the Affymetrix HG-U133A GeneChip, use sets of probes chosen to match specified genes, with the expectation that if a particular gene is highly expressed then all the probes in the designated probe set will provide a consistent message signifying the gene's presence. However, we demonstrate by data mining thousands of CEL files from NCBI's GEO database that 4G-probes (defined as probes containing sequences of four or more consecutive guanine (G) bases) do not react in the intended way. Rather, possibly due to the formation of G-quadruplexes, most 4G-probes are correlated, irrespective of the expression of the thousands of genes for which they were separately intended. It follows that 4G-probes should be ignored when calculating gene expression levels. Furthermore, future microarray designs should make no use of 4G-probes
Heat-Transfer and Pressure Measurements from a Flight Test of a 1/18-Scale Model of the Titan Intercontinental Ballistic Missile up to a Mach Number of 3.95 and Reynolds Number Per Foot of 23 by 10 to the 6Th Power
Bose-Einstein condensate of kicked rotators with time-dependent interaction
A modification of the quantum kicked rotator is suggested with a
time-dependent delta-kicked interaction parameter which can be realized by a
pulsed turn-on of a Feshbach resonance. The mean kinetic energy increases
exponentially with time in contrast to a merely diffusive or linear growth for
the first few kicks for the quantum kicked rotator with a constant interaction
parameter. A recursive relation is derived in a self-consistent random phase
approximation which describes this superdiffusive growth of the kinetic energy
and is compared with numerical simulations. Unlike in the case of the quantum
rotator with constant interaction, a Lax pair is not found. In general the
delta-kicked interaction is found to lead to strong chaotic behaviour.Comment: 4 pages, 3 figure
Summary of information on low-speed lateral-directional derivatives due to rate of change of sideslip beta prime
The results presented show that the magnitudes of the aerodynamic stability derivatives due to rate of change of sideslip become quite large at high angles of attack for swept- and delta-wing configurations, and that such derivatives have large effects on the calculated dynamic stability of these configurations at high angles of attack. The wind-tunnel test techniques used to measure the beta prime derivatives and various approaches used to predict them are discussed. Both the conventional oscillating-airfoil theory and the lag-of-the-sidewash theory are shown to be inadequate for predicting the vertical-tail contribution to the acceleration-in-sideslip derivative; a flow-field-lag theory, which is discussed, appears to give qualitative agreement with experimental data for a current twin-jet fighter configuration
Supersymmetric minisuperspace with non-vanishing fermion number
The Lagrangean of supergravity is dimensionally reduced to one
(time-like) dimension assuming spatial homogeneity of any Bianchi type within
class A of the classification of Ellis and McCallum. The algebra of the
supersymmetry generators, the Lorentz generators, the diffeomorphism generators
and the Hamiltonian generator is determined and found to close. In contrast to
earlier work, infinitely many physical states with non-vanishing even fermion
number are found to exist in these models, indicating that minisuperspace
models in supergravity may be just as useful as in pure gravity.Comment: 4 page
On the unification of dwarf and giant elliptical galaxies
The near orthogonal distributions of dwarf elliptical (dE) and giant
elliptical (E) galaxies in the mu_e-Mag and mu_e-log(R_e) diagrams have been
interpreted as evidence for two distinct galaxy formation processes. However,
continuous, linear relationships across the alleged dE/E boundary at M_B = -18
mag - such as those between central surface brightness (mu_0) and (i) galaxy
magnitude and (ii) light-profile shape (n) - suggest a similar, governing
formation mechanism. Here we explain how these latter two linear trends
necessitate a different behavior for dE and E galaxies, exactly as observed, in
diagrams involving mu_e (and also _e). A natural consequence is that the
distribution of dEs and Es in Fundamental Plane type analyses that use the
associated intensity I_e, or _e, are expected to appear different. Together
with other linear trends across the alleged dE/E boundary, such as those
between luminosity and color, metallicity, and velocity dispersion, it appears
that the dEs form a continuous extension to the E galaxies. The presence of
partially depleted cores in luminous (M_B < -20.5 mag) Es does however signify
the action of a different physical process at the centers (< ~300 pc) of these
galaxies.Comment: 5 pages from the proceedings of the 2004 conference "Penetrating bars
through masks of cosmic dust: the Hubble tuning fork strikes a new note".
Edited by D. L. Block, I. Puerari, K. C. Freeman, R. Groess, and E. K. Bloc
Ramsey numbers and adiabatic quantum computing
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In
fact, for the two-color Ramsey numbers with , only nine are
currently known. We present a quantum algorithm for the computation of the
Ramsey numbers . We show how the computation of can be mapped
to a combinatorial optimization problem whose solution can be found using
adiabatic quantum evolution. We numerically simulate this adiabatic quantum
algorithm and show that it correctly determines the Ramsey numbers R(3,3) and
R(2,s) for . We then discuss the algorithm's experimental
implementation, and close by showing that Ramsey number computation belongs to
the quantum complexity class QMA.Comment: 4 pages, 1 table, no figures, published versio
Magnetoelectric Jones Dichroism in Atoms
The authors suggest that atomic experiments measuring the interference
between magnetic-dipole and electric-field-induced electric-dipole transition
amplitudes provide a valuable system to study magnetoelectric Jones effects.Comment: 3 pages, 2 figure
- …
