1,051 research outputs found

    Global stellar variability study in the field-of-view of the Kepler satellite

    Full text link
    We present the results of an automated variability analysis of the Kepler public data measured in the first quarter (Q1) of the mission. In total, about 150 000 light curves have been analysed to detect stellar variability, and to identify new members of known variability classes. We also focus on the detection of variables present in eclipsing binary systems, given the important constraints on stellar fundamental parameters they can provide. The methodology we use here is based on the automated variability classification pipeline which was previously developed for and applied successfully to the CoRoT exofield database and to the limited subset of a few thousand Kepler asteroseismology light curves. We use a Fourier decomposition of the light curves to describe their variability behaviour and use the resulting parameters to perform a supervised classification. Several improvements have been made, including a separate extractor method to detect the presence of eclipses when other variability is present in the light curves. We also included two new variability classes compared to previous work: variables showing signs of rotational modulation and of activity. Statistics are given on the number of variables and the number of good candidates per class. A comparison is made with results obtained for the CoRoT exoplanet data. We present some special discoveries, including variable stars in eclipsing binary systems. Many new candidate non-radial pulsators are found, mainly Delta Sct and Gamma Dor stars. We have studied those samples in more detail by using 2MASS colours. The full classification results are made available as an online catalogue.Comment: 15 pages, 5 figures, Accepted for publication in Astronomy and Astrophysics on 09/02/201

    The long period eccentric orbit of the particle accelerator HD167971 revealed by long baseline interferometry

    Get PDF
    Using optical long baseline interferometry, we resolved for the first time the two wide components of HD167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi-epoch VLTI observations provide direct evidence for a gravitational link between the O8 supergiant and the close eclipsing O + O binary. The separation varies from 8 to 15 mas over the three-year baseline of our observations, suggesting that the components evolve on a wide and very eccentric orbit (most probably e>0.5). These results provide evidence that the wide orbit revealed by our study is not coplanar with the orbit of the inner eclipsing binary. From our measurements of the near-infrared luminosity ratio, we constrain the spectral classification of the components in the close binary to be O6-O7, and confirm that these stars are likely main-sequence objects. Our results are discussed in the context of the bright non-thermal radio emission already reported for this system, and we provide arguments in favour of a maximum radio emission coincident with periastron passage. HD167971 turns out to be an efficient O-type particle accelerator that constitutes a valuable target for future high angular resolution radio imaging using VLBI facilities.Comment: 8 pages, including 4 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    Content and changes in Provitamin A carotenoids during ripening of fruit from four popular Musa cultivars consumed in Eastern Democratic Republic of Congo

    Get PDF
    Poster presented at Nutrition Congress Africa 2012. Transforming the Nutrition Landscape in Africa. Bloemfontein (South Africa), 1-4 Oct 201

    Modeling Ultraviolet Wind Line Variability in Massive Hot Stars

    Full text link
    We model the detailed time-evolution of Discrete Absorption Components (DACs) observed in P Cygni profiles of the Si IV lam1400 resonance doublet lines of the fast-rotating supergiant HD 64760 (B0.5 Ib). We adopt the common assumption that the DACs are caused by Co-rotating Interaction Regions (CIRs) in the stellar wind. We perform 3D radiative transfer calculations with hydrodynamic models of the stellar wind that incorporate these large-scale density- and velocity-structures. We develop the 3D transfer code Wind3D to investigate the physical properties of CIRs with detailed fits to the DAC shape and morphology. The CIRs are caused by irregularities on the stellar surface that change the radiative force in the stellar wind. In our hydrodynamic model we approximate these irregularities by circular symmetric spots on the stellar surface. We use the Zeus3D code to model the stellar wind and the CIRs, limited to the equatorial plane. We constrain the properties of large-scale wind structures with detailed fits to DACs observed in HD 64760. A model with two spots of unequal brightness and size on opposite sides of the equator, with opening angles of 20 +/- 5 degr and 30 +/- 5 degr diameter, and that are 20 +/- 5 % and 8 +/- 5 % brighter than the stellar surface, respectively, provides the best fit to the observed DACs. The recurrence time of the DACs compared to the estimated rotational period corresponds to spot velocities that are 5 times slower than the rotational velocity. The mass-loss rate of the structured wind model for HD 64760 does not exceed the rate of the spherically symmetric smooth wind model by more than 1 %. The fact that DACs are observed in a large number of hot stars constrains the clumping that can be present in their winds, as substantial amounts of clumping would tend to destroy the CIRs.Comment: 58 pages, 16 figures, 1 animation. Accepted for publication in The Astrophysical Journal, Main Journal. More information and animations are available at http://alobel.freeshell.org/hotstars.htm

    The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X

    Get PDF
    An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to produce a high energy spectrum, in addition to the strong thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal observatory to investigate the hard X-ray spectrum (above 10 keV) of these systems, i.e. where it is no longer dominated by the thermal emission. Such observations are strongly needed to constrain the models aimed at understanding the physics of particle acceleration in CWB. Such systems are important laboratories for investigating the underlying physics of particle acceleration at high Mach number shocks, and probe a different region of parameter space than studies of supernova remnants.Comment: 2 pages, 2 figures, to appear in the proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", held in Bologna, Italy (14-16 May 2007

    ALMA observations of the supergiant B[e] star Wd1-9

    Get PDF
    Mass-loss in massive stars plays a critical role in their evolution, although the precise mechanism(s) responsible – radiatively driven winds, impulsive ejection and/or binary interaction – remain uncertain. In this Letter, we present Atacama Large Millimetre/Submillimeter Array line and continuum observations of the supergiant B[e] star Wd1-9, a massive post-main-sequence object located within the starburst cluster Westerlund 1 (Wd1). We find it to be one of the brightest stellar point sources in the sky at millimetre wavelengths, with (serendipitously identified) emission in the H41α radio recombination line. We attribute these properties to a low velocity (∼100 km s-1 ) ionized wind, with an extreme mass-loss rate ≳6.4 × 105(d/5 kpc)1.5 Mȯyr-1. External to this is an extended aspherical ejection nebula indicative of a prior phase of significant mass-loss. Taken together, the millimetre properties of Wd1-9 show a remarkable similarity to those of the highly luminous stellar source MWC349A. We conclude that these objects are interacting binaries evolving away from the main sequence and undergoing rapid case-A mass transfer. As such they – and by extension the wider class of supergiant B[e] stars – may provide a unique window into the physics of a process that shapes the life-cycle of ∼70 per cent of massive stars found in binary systems

    The 2.35 year itch of Cyg OB2 #9. II. Radio monitoring

    Full text link
    Cyg OB2 #9 is one of a small set of non-thermal radio emitting massive O-star binaries. The non-thermal radiation is due to synchrotron emission in the colliding-wind region. Cyg OB2 #9 was only recently discovered to be a binary system and a multi-wavelength campaign was organized to study its 2011 periastron passage. We report here on the results of the radio observations obtained in this monitoring campaign. We used the Expanded Very Large Array (EVLA) radio interferometer to obtain 6 and 20 cm continuum fluxes. The observed radio light curve shows a steep drop in flux sometime before periastron. The fluxes drop to a level that is comparable to the expected free-free emission from the stellar winds, suggesting that the non-thermal emitting region is completely hidden at that time. After periastron passage, the fluxes slowly increase. We introduce a simple model to solve the radiative transfer in the stellar winds and the colliding-wind region, and thus determine the expected behaviour of the radio light curve. From the asymmetry of the light curve, we show that the primary has the stronger wind. This is somewhat unexpected if we use the astrophysical parameters based on theoretical calibrations. But it becomes entirely feasible if we take into account that a given spectral type - luminosity class combination covers a range of astrophysical parameters. The colliding-wind region also contributes to the free-free emission, which can help to explain the high values of the spectral index seen after periastron passage. Combining our data with older Very Large Array (VLA) data allows us to derive a period P = 860.0 +- 3.7 days for this system. With this period, we update the orbital parameters that were derived in the first paper of this series.Comment: 10 pages, 4 figures, accepted for publication in A&

    Systemicity of banana bunchy top viral infection in the Kisangani region of the Democratic Republic of Congo

    Get PDF
    In order to evaluate the systemicity of BBTV from one plant of the mat to the physically attached shoots, 60 mats both of “Yangambi Km5”, Musa AAA and those of the false horn plantain “Libanga Likale”, Musa AAB showing severity levels from 0 to 5 were selected in backyards in Kisangani. In addition, 30 sucker corms per genotype were put under macro-propagation and leaf samples of lateral shoots that had emerged were tested using triple antibody sandwich-enzyme linked immuno sorbent assay (TAS-ELISA). In the backyards, for mats with no visible banana bunchy top disease (BBTD) symptoms, none of the analyzed mats with a total of 29 plants of “Yangambi Km5” and of 35 plants of “Libanga Likale” tested ELISA positive, indicating the absence of the BBTV infection. However, for the severity levels of one to five, 32 to 63.5% of plants in the mats were ELISA positive for “Yangambi Km5”, while 34.9 to 73.2% of plants from “Libanga Likale” tested positive for BBTV. After macro-propagation, 100% of lateral shoots of both cultivars at BBTD severity levels 4 and 5 tested positive. On the other hand, none of the lateral shoots at level 0 tested ELISA positive. However, for levels 1 to 3 some ELISA negative plantlets (40 to 23% for “Yangambi Km5” and 53 to 15% for “Libanga Likale”) were observed. This study indicates the need for the complete destruction of all mats harbouring plants with BBTD severity levels of 3, 4 and 5. Macro-propagation of suckers with severity level 1 symptoms could produce virus-free plantlets but ELISA testing of the lateral shoots is essential to pinpoint the virus-free plantlets

    An alternative to complete banana mat uprooting: assessing the effectiveness of continuous cutting at soil level of all shoots in a mat on speed for corm decay

    Get PDF
    The complete uprooting of diseased mats/fields (CMU) is one of the recommended control options for Xanthomonas wilt of banana. CMU is labour intensive, time consuming and disturbs the soil structure, exposing fields to erosion. CMU often involves exportation of whole plant biomass, affecting soil fertility. The potential of continuous cutting at soil level of all shoots in a mat until complete corm decay in situ as an alternative to CMU was assessed. The first experiment was established using 224 banana mats in their third cropping cycle. All the plants were cut down at soil level, meristems were removed, and sweet potato and bush bean planted. In a repeat experiment with 180 banana mats, a wide range of treatments were applied on top by cutting and removing the apical meristems. These included the: injection of 2,4-D herbicide into the centre of each corm; removal of a cone shaped section from the center of each corm; and creation of a 20 cm deep incision in the center of each corm; in combination with the application of soil or farmyard manure substrate on cut surface. In the first experiment, re-sprouting stopped at 8 months while corms fully decayed after 25 months. Annual intercrops did not influence re-sprouting and corm decay rate. Similar re-sprouting trends occured in the repeat experiment. However, 2,4-D application significantly (P<0.05) lowered decay time, with 12-47% of corms decomposed at 8 months compared with 0-20% in other treatments without 2,4-D. In the 2,4-D treatments, 100% of corms had decomposed compared with 36-80% in other treatments by the 20th month. Deep incisions or cuts did not significantly hasten decomposition. Soil or manure substrate addition had no advantage when compared with the cut surfaces without substrates. A cost-benefit analysis showed a five times higher net income with continuous cutting of re-sprouts when compared with CMU
    corecore