469 research outputs found
Profile and width of rough interfaces
In the context of Landau theory and its field theoretical refinements,
interfaces between coexisting phases are described by intrinsic profiles. These
intrinsic interface profiles, however, are neither directly accessible by
experiment nor by computer simulation as they are broadened by long-wavelength
capillary waves. In this paper we study the separation of the small scale
intrinsic structure from the large scale capillary wave fluctuations in the
Monte Carlo simulated three-dimensional Ising model. To this purpose, a
blocking procedure is applied, using the block size as a variable cutoff, and a
translationally invariant method to determine the interface position of
strongly fluctuating profiles on small length scales is introduced. While the
capillary wave picture is confirmed on large length scales and its limit of
validity is estimated, an intrinsic regime is, contrary to expectations, not
observed.Comment: 18 pages, 4 Postscript figures, LaTeX2e, formulation of sec.3.2
improved, 1 reference adde
Thurston's pullback map on the augmented Teichm\"uller space and applications
Let be a postcritically finite branched self-cover of a 2-dimensional
topological sphere. Such a map induces an analytic self-map of a
finite-dimensional Teichm\"uller space. We prove that this map extends
continuously to the augmented Teichm\"uller space and give an explicit
construction for this extension. This allows us to characterize the dynamics of
Thurston's pullback map near invariant strata of the boundary of the augmented
Teichm\"uller space. The resulting classification of invariant boundary strata
is used to prove a conjecture by Pilgrim and to infer further properties of
Thurston's pullback map. Our approach also yields new proofs of Thurston's
theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page
Molecular Dynamics Study of the Nematic-Isotropic Interface
We present large-scale molecular dynamics simulations of a nematic-isotropic
interface in a system of repulsive ellipsoidal molecules, focusing in
particular on the capillary wave fluctuations of the interfacial position. The
interface anchors the nematic phase in a planar way, i.e., the director aligns
parallel to the interface. Capillary waves in the direction parallel and
perpendicular to the director are considered separately. We find that the
spectrum is anisotropic, the amplitudes of capillary waves being larger in the
direction perpendicular to the director. In the long wavelength limit, however,
the spectrum becomes isotropic and compares well with the predictions of a
simple capillary wave theory.Comment: to appear in Phys. Rev.
Nest site selection by sea turtles
The distribution of 38 nests of loggerhead turtles (Caretta caretta) on beaches on Sanibel and Captiva islands, south-western Florida (26°26\u27N 82°16\u27W), and of 70 first digging attempts by green turtles (Chelonia mydas) on Ascension Island (7°57\u27S 14°22\u27W), was quantified. For loggerhead turtles on Sanibel and Captiva, nests were clumped close to the border between the open sand and the supra-littoral vegetation that backed the beaches. This spatial pattern of nests was closely reproduced by assuming simply that turtles crawled a random distance above the most recent high water line prior to digging. In contrast, green turtles on Ascension Island clumped their first digging attempts on the uneven beach above the springs high water line, crawling up to 80 m to reach this beach zone
The Academy of Rural Veterinarians: Grassroots Innovation to Address the Rural Veterinarian Shortage
In 2000, a group of dedicated rural veterinarians met while taking the Beef Cattle Production Management Course at the Great Plains Veterinary Education Center at Clay Center, NE. Upon finding an a common belief in the value of rural practice, this group began visiting each other\u27s practices and offered critiques about ways that the practice could work more efficiently. One thing became almost immediately noticeable through these visits-the challenge of finding qualified associates interested in joining a rural practice
Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study
A popular concept which describes the structure of polymer interfaces by
``intrinsic profiles'' centered around a two dimensional surface, the ``local
interface position'', is tested by extensive Monte Carlo simulations of
interfaces between demixed homopolymer phases in symmetric binary (AB)
homopolymer blends, using the bond fluctuation model. The simulations are done
in an LxLxD geometry. The interface is forced to run parallel to the LxL planes
by imposing periodic boundary conditions in these directions and fixed boundary
conditions in the D direction, with one side favoring A and the other side
favoring B. Intrinsic profiles are calculated as a function of the ``coarse
graining length'' B by splitting the system into columns of size BxBxD and
averaging in each column over profiles relative to the local interface
position. The results are compared to predictions of the self-consistent field
theory. It is shown that the coarse graining length can be chosen such that the
interfacial width matches that of the self-consistent field profiles, and that
for this choice of B the ``intrinsic'' profiles compare well with the
theoretical predictions.Comment: to appear in Phys. Rev.
Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials
A novel test-area TA technique for the direct simulation of the interfacial tension of systems
interacting through arbitrary intermolecular potentials is presented in this paper. The most
commonly used method invokes the mechanical relation for the interfacial tension in terms of the
tangential and normal components of the pressure tensor relative to the interface the relation of
Kirkwood and Buff J. Chem. Phys. 17, 338 1949 . For particles interacting through
discontinuous intermolecular potentials e.g., hard-core fluids this involves the determination of
functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By
contrast we employ a thermodynamic route to determine the surface tension from a free-energy
perturbation due to a test change in the surface area. There are important distinctions between our
test-area approach and the computation of a free-energy difference of two or more systems with
different interfacial areas the method of Bennett J. Comput. Phys. 22, 245 1976 , which can also
be used to determine the surface tension. In order to demonstrate the adequacy of the method, the
surface tension computed from test-area Monte Carlo TAMC simulations are compared with the
data obtained with other techniques e.g., mechanical and free-energy differences for the
vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a
discontinuous potential which is difficult to treat with standard methods. Our thermodynamic
test-area approach offers advantages over existing techniques of computational efficiency, ease of
implementation, and generality. The TA method can easily be implemented within either Monte
Carlo TAMC or molecular-dynamics TAMD algorithms for different types of interfaces
vapor-liquid, liquid-liquid, fluid-solid, etc. of pure systems and mixtures consisting of complex
polyatomic molecules
Quasars: the characteristic spectrum and the induced radiative heating
Using information on the cosmic X-ray background and the cumulative light of
active galactic nuclei at infrared wavelengths, the estimated local mass
density of galactic massive black holes (MBHs) and published AGN composite
spectra in the optical, UV and X-ray, we compute the characteristic
angular-integrated, broad-band spectral energy distribution of the average
quasar in the universe. We demonstrate that the radiation from such sources can
photoionize and Compton heat the plasma surrounding them up to an equilibrium
Compton temperature (Tc) of 2x10^7 K. It is shown that circumnuclear
obscuration cannot significantly affect the net gas Compton heating and cooling
rates, so that the above Tc value is approximately characteristic of both
obscured and unobscured quasars. This temperature is above typical gas
temperatures in elliptical galaxies and just above the virial temperatures of
giant ellipticals. The general results of this work can be used for accurate
calculations of the feedback effect of MBHs on both their immediate environs
and the more distant interstellar medium of their host galaxies.Comment: 15 pages, 5 figures. Revised version accepted for publication in
MNRA
The foraminifera and paleoecology of the Vacaville Shale, Vacaville, California
Online access for this thesis was created in part with support from the Institute of Museum and Library Services (IMLS) administered by the Nevada State Library, Archives and Public Records through the Library Services and Technology Act (LSTA). To obtain a high quality image or document please contact the DeLaMare Library at https://unr.libanswers.com/ or call: 775-784-6945.A sample of Vacaville shale was analyzed for foraminifera resulting in a reevaluation of the paleoecology of the formation
A critical assessment of methods for the intrinsic analysis of liquid interfaces. 1. surface site distributions
Substantial progress in our understanding of interfacial structure and dynamics has stemmed from the recent development of algorithms that allow for an intrinsic analysis of fluid interfaces. These work by identifying the instantaneous location of the interface, at the atomic level, for each molecular configuration and then computing properties relative to this location. Such a procedure eliminates the broadening of the interface caused by capillary waves and reveals the underlying features of the system. However, a precise definition of which molecules actually belong to the interfacial layer is difficult to achieve in practice. Furthermore, it is not known if the different intrinsic analysis methods are consistent with each other and yield similar results for the interfacial properties. In this paper, we carry out a systematic and detailed comparison of the available methods for intrinsic analysis of fluid interfaces, based on a molecular dynamics simulation of the interface between liquid water and carbon tetrachloride. We critically assess the advantages and shortcomings of each method, based on reliability, robustness, and speed of computation, and establish consistent criteria for determining which molecules belong to the surface layer. We believe this will significantly contribute to make intrinsic analysis methods widely and routinely applicable to interfacial systems
- …
