469 research outputs found

    Profile and width of rough interfaces

    Full text link
    In the context of Landau theory and its field theoretical refinements, interfaces between coexisting phases are described by intrinsic profiles. These intrinsic interface profiles, however, are neither directly accessible by experiment nor by computer simulation as they are broadened by long-wavelength capillary waves. In this paper we study the separation of the small scale intrinsic structure from the large scale capillary wave fluctuations in the Monte Carlo simulated three-dimensional Ising model. To this purpose, a blocking procedure is applied, using the block size as a variable cutoff, and a translationally invariant method to determine the interface position of strongly fluctuating profiles on small length scales is introduced. While the capillary wave picture is confirmed on large length scales and its limit of validity is estimated, an intrinsic regime is, contrary to expectations, not observed.Comment: 18 pages, 4 Postscript figures, LaTeX2e, formulation of sec.3.2 improved, 1 reference adde

    Thurston's pullback map on the augmented Teichm\"uller space and applications

    Full text link
    Let ff be a postcritically finite branched self-cover of a 2-dimensional topological sphere. Such a map induces an analytic self-map σf\sigma_f of a finite-dimensional Teichm\"uller space. We prove that this map extends continuously to the augmented Teichm\"uller space and give an explicit construction for this extension. This allows us to characterize the dynamics of Thurston's pullback map near invariant strata of the boundary of the augmented Teichm\"uller space. The resulting classification of invariant boundary strata is used to prove a conjecture by Pilgrim and to infer further properties of Thurston's pullback map. Our approach also yields new proofs of Thurston's theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page

    Molecular Dynamics Study of the Nematic-Isotropic Interface

    Full text link
    We present large-scale molecular dynamics simulations of a nematic-isotropic interface in a system of repulsive ellipsoidal molecules, focusing in particular on the capillary wave fluctuations of the interfacial position. The interface anchors the nematic phase in a planar way, i.e., the director aligns parallel to the interface. Capillary waves in the direction parallel and perpendicular to the director are considered separately. We find that the spectrum is anisotropic, the amplitudes of capillary waves being larger in the direction perpendicular to the director. In the long wavelength limit, however, the spectrum becomes isotropic and compares well with the predictions of a simple capillary wave theory.Comment: to appear in Phys. Rev.

    Nest site selection by sea turtles

    Full text link
    The distribution of 38 nests of loggerhead turtles (Caretta caretta) on beaches on Sanibel and Captiva islands, south-western Florida (26°26\u27N 82°16\u27W), and of 70 first digging attempts by green turtles (Chelonia mydas) on Ascension Island (7°57\u27S 14°22\u27W), was quantified. For loggerhead turtles on Sanibel and Captiva, nests were clumped close to the border between the open sand and the supra-littoral vegetation that backed the beaches. This spatial pattern of nests was closely reproduced by assuming simply that turtles crawled a random distance above the most recent high water line prior to digging. In contrast, green turtles on Ascension Island clumped their first digging attempts on the uneven beach above the springs high water line, crawling up to 80 m to reach this beach zone

    The Academy of Rural Veterinarians: Grassroots Innovation to Address the Rural Veterinarian Shortage

    Get PDF
    In 2000, a group of dedicated rural veterinarians met while taking the Beef Cattle Production Management Course at the Great Plains Veterinary Education Center at Clay Center, NE. Upon finding an a common belief in the value of rural practice, this group began visiting each other\u27s practices and offered critiques about ways that the practice could work more efficiently. One thing became almost immediately noticeable through these visits-the challenge of finding qualified associates interested in joining a rural practice

    Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study

    Full text link
    A popular concept which describes the structure of polymer interfaces by ``intrinsic profiles'' centered around a two dimensional surface, the ``local interface position'', is tested by extensive Monte Carlo simulations of interfaces between demixed homopolymer phases in symmetric binary (AB) homopolymer blends, using the bond fluctuation model. The simulations are done in an LxLxD geometry. The interface is forced to run parallel to the LxL planes by imposing periodic boundary conditions in these directions and fixed boundary conditions in the D direction, with one side favoring A and the other side favoring B. Intrinsic profiles are calculated as a function of the ``coarse graining length'' B by splitting the system into columns of size BxBxD and averaging in each column over profiles relative to the local interface position. The results are compared to predictions of the self-consistent field theory. It is shown that the coarse graining length can be chosen such that the interfacial width matches that of the self-consistent field profiles, and that for this choice of B the ``intrinsic'' profiles compare well with the theoretical predictions.Comment: to appear in Phys. Rev.

    Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials

    Get PDF
    A novel test-area TA technique for the direct simulation of the interfacial tension of systems interacting through arbitrary intermolecular potentials is presented in this paper. The most commonly used method invokes the mechanical relation for the interfacial tension in terms of the tangential and normal components of the pressure tensor relative to the interface the relation of Kirkwood and Buff J. Chem. Phys. 17, 338 1949 . For particles interacting through discontinuous intermolecular potentials e.g., hard-core fluids this involves the determination of functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By contrast we employ a thermodynamic route to determine the surface tension from a free-energy perturbation due to a test change in the surface area. There are important distinctions between our test-area approach and the computation of a free-energy difference of two or more systems with different interfacial areas the method of Bennett J. Comput. Phys. 22, 245 1976 , which can also be used to determine the surface tension. In order to demonstrate the adequacy of the method, the surface tension computed from test-area Monte Carlo TAMC simulations are compared with the data obtained with other techniques e.g., mechanical and free-energy differences for the vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a discontinuous potential which is difficult to treat with standard methods. Our thermodynamic test-area approach offers advantages over existing techniques of computational efficiency, ease of implementation, and generality. The TA method can easily be implemented within either Monte Carlo TAMC or molecular-dynamics TAMD algorithms for different types of interfaces vapor-liquid, liquid-liquid, fluid-solid, etc. of pure systems and mixtures consisting of complex polyatomic molecules

    Quasars: the characteristic spectrum and the induced radiative heating

    Full text link
    Using information on the cosmic X-ray background and the cumulative light of active galactic nuclei at infrared wavelengths, the estimated local mass density of galactic massive black holes (MBHs) and published AGN composite spectra in the optical, UV and X-ray, we compute the characteristic angular-integrated, broad-band spectral energy distribution of the average quasar in the universe. We demonstrate that the radiation from such sources can photoionize and Compton heat the plasma surrounding them up to an equilibrium Compton temperature (Tc) of 2x10^7 K. It is shown that circumnuclear obscuration cannot significantly affect the net gas Compton heating and cooling rates, so that the above Tc value is approximately characteristic of both obscured and unobscured quasars. This temperature is above typical gas temperatures in elliptical galaxies and just above the virial temperatures of giant ellipticals. The general results of this work can be used for accurate calculations of the feedback effect of MBHs on both their immediate environs and the more distant interstellar medium of their host galaxies.Comment: 15 pages, 5 figures. Revised version accepted for publication in MNRA

    The foraminifera and paleoecology of the Vacaville Shale, Vacaville, California

    Get PDF
    Online access for this thesis was created in part with support from the Institute of Museum and Library Services (IMLS) administered by the Nevada State Library, Archives and Public Records through the Library Services and Technology Act (LSTA). To obtain a high quality image or document please contact the DeLaMare Library at https://unr.libanswers.com/ or call: 775-784-6945.A sample of Vacaville shale was analyzed for foraminifera resulting in a reevaluation of the paleoecology of the formation

    A critical assessment of methods for the intrinsic analysis of liquid interfaces. 1. surface site distributions

    Get PDF
    Substantial progress in our understanding of interfacial structure and dynamics has stemmed from the recent development of algorithms that allow for an intrinsic analysis of fluid interfaces. These work by identifying the instantaneous location of the interface, at the atomic level, for each molecular configuration and then computing properties relative to this location. Such a procedure eliminates the broadening of the interface caused by capillary waves and reveals the underlying features of the system. However, a precise definition of which molecules actually belong to the interfacial layer is difficult to achieve in practice. Furthermore, it is not known if the different intrinsic analysis methods are consistent with each other and yield similar results for the interfacial properties. In this paper, we carry out a systematic and detailed comparison of the available methods for intrinsic analysis of fluid interfaces, based on a molecular dynamics simulation of the interface between liquid water and carbon tetrachloride. We critically assess the advantages and shortcomings of each method, based on reliability, robustness, and speed of computation, and establish consistent criteria for determining which molecules belong to the surface layer. We believe this will significantly contribute to make intrinsic analysis methods widely and routinely applicable to interfacial systems
    corecore