314 research outputs found

    Thermal Properties of High Power Laser Bars Investigated by Spatially Resolved Thermoreflectance Spectroscopy

    Full text link
    In this work we present results of the analysis of thermal properties of high-power laser bars obtained by spatially resolved thermoreflectance (TR) spectroscopy. Thermoreflectance is a modulation technique relying on periodic facet temperature modulation induced by pulsed current supply of the laser. The periodic temperature change of the laser induces variation of the refractive index and consequently modulates probe beam reflectivity. The technique has a spatial resolution of about ~1 μ\mum and can be used for temperature mapping over 300 μ\mum x 300 μ\mum area. Information obtained in these experiments provide an insight into thermal processes occurring at devices' facets and consequently lead to increased reliability and substantially longer lifetimes of such structures.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects

    Full text link
    We derive the expression for spontaneous emission rate in finite one-dimensional photonic crystal with arbitrary defects using the effective resonator model to describe electromagnetic field distributions in the structure. We obtain explicit formulas for contributions of different types of modes, i.e. radiation, substrate and guided modes. Formal calculations are illustrated with a few numerical examples, which demonstrate that the application of effective resonator model simplifies interpretation of results.Comment: Cent. Eur. J. Phys, in pres

    Nonlinear Quantum Mechanics at the Planck Scale

    Full text link
    I argue that the linearity of quantum mechanics is an emergent feature at the Planck scale, along with the manifold structure of space-time. In this regime the usual causality violation objections to nonlinearity do not apply, and nonlinear effects can be of comparable magnitude to the linear ones and still be highly suppressed at low energies. This can offer alternative approaches to quantum gravity and to the evolution of the early universe.Comment: Talk given at the International Quantum Structures 2004 meeting, 16 pages LaTe

    Complete positivity of nonlinear evolution: A case study

    Get PDF
    Simple Hartree-type equations lead to dynamics of a subsystem that is not completely positive in the sense accepted in mathematical literature. In the linear case this would imply that negative probabilities have to appear for some system that contains the subsystem in question. In the nonlinear case this does not happen because the mathematical definition is physically unfitting as shown on a concrete example.Comment: extended version, 3 appendices added (on mixed states, projection postulate, nonlocality), to be published in Phys. Rev.

    Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    Get PDF
    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls

    Angular and Temperature Tuning of Emission from Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)

    Get PDF
    In this paper we demonstrate how the tuning of the VECSEL heterostructure can be precisely determined. Since the VECSEL active region is embodied in a microcavity, the photoluminescence signal collected from the chip surface is modified by the resonance of this cavity. The angle resolved photoluminescence measurements combined with the temperature tuning of the structure allowed us to precisely determine VECSEL emission features. The investigated structure consists of GaAs cavity with six InGaAs quantum wells and is designed for lasing at 980 nm. Introduction Vertical-external-cavity surface-emitting lasers (VECSELs
    corecore