1,468 research outputs found
[Book Review of] \u3cem\u3ePoverty and Health: A Sociological Analysis\u3c/em\u3e, edited by John Kosa and Irving K. Zola
The Taurus Boundary of Stellar/Substellar (TBOSS) Survey I: far-IR disk emission measured with Herschel
With Herschel/PACS 134 low mass members of the Taurus star-forming region
spanning the M4-L0 spectral type range and covering the transition from low
mass stars to brown dwarfs were observed. Combining the new Herschel results
with other programs, a total of 150 of the 154 M4-L0 Taurus members members
have observations with Herschel. Among the 150 targets, 70um flux densities
were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and
3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um
flux density level declines with spectral type, however, the distribution of
excess relative to central object flux density does not change across the
stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS
values with the results from K0-M3 ClassII members results in the first
comprehensive census of far-IR emission across the full mass spectrum of the
stellar and substellar population of a star-forming region, and the median flux
density declines with spectral type in a trend analogous to the flux density
decline expected for the central objects. SEDs were constructed for all TBOSS
targets covering the optical to far-IR range and extending to the submm/mm for
a subset of sources. Based on an initial exploration of the impact of different
physical parameters; inclination, scale height and flaring have the largest
influence on the PACS flux densities. From the 24um to 70um spectral index of
the SEDs, 5 new candidate transition disks were identified. The steep 24um to
70um slope for a subset of 8 TBOSS targets may be an indication of truncated
disks in these systems.Two examples of mixed pair systems that include
secondaries with disks were measured. Finally, comparing the TBOSS results with
a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks
around the Taurus substellar population.Comment: 64 pages, 33 figures, 12 tables, accepted for publication in A&
The Brown-dwarf Atmosphere Monitoring (BAM) Project II: Multi-epoch monitoring of extremely cool brown dwarfs
With the discovery of Y dwarfs by the WISE mission, the population of field
brown dwarfs now extends to objects with temperatures comparable to those of
Solar System planets. To investigate the atmospheres of these newly identified
brown dwarfs, we have conducted a pilot study monitoring an initial sample of
three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared
photometric variability at multiple epochs. With J-band imaging, each target
was observed for a period of 1.0h to 4.5h per epoch, which covers a significant
fraction of the expected rotational period. These measurements represent the
first photometric monitoring for these targets. For three of the four targets
(2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with
the time span between epochs ranging from a few hours to ~2 years. During the
first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable
min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years
later did not note any variability to a 3% upper limit. With an effective
temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published
to-date, and combined with its high and variable amplitude makes it a
fascinating target for detailed follow-up. The three remaining targets showed
no significant variations, with a photometric precision between 0.8% and 20.0%,
depending on the target brightness. Combining the new results with previous
multi-epoch observations of brown dwarfs with spectral types of T5 or later,
the currently identified variables have locations on the colour-colour diagram
better matched by theoretical models incorporating cloud opacities rather than
cloud-free atmospheres. This preliminary result requires further study to
determine if there is a definitive link between variability among late-T dwarfs
and their location on the colour-colour diagram.Comment: 9 pages, 6 figures, 3 tables, accepted for publication in MNRA
Dust masses of disks around 8 Brown Dwarfs and Very Low-Mass Stars in Upper Sco OB1 and Ophiuchus
We present the results of ALMA band 7 observations of dust and CO gas in the
disks around 7 objects with spectral types ranging between M5.5 and M7.5 in
Upper Scorpius OB1, and one M3 star in Ophiuchus. We detect unresolved
continuum emission in all but one source, and the CO J=3-2 line in two
sources. We constrain the dust and gas content of these systems using a grid of
models calculated with the radiative transfer code MCFOST, and find disk dust
masses between 0.1 and 1 M, suggesting that the stellar mass / disk
mass correlation can be extrapolated for brown dwarfs with masses as low as
0.05 M. The one disk in Upper Sco in which we detect CO emission, 2MASS
J15555600, is also the disk with warmest inner disk as traced by its H - [4.5]
photometric color. Using our radiative transfer grid, we extend the correlation
between stellar luminosity and mass-averaged disk dust temperature originally
derived for stellar mass objects to the brown dwarf regime to , applicable to spectral types
of M5 and later. This is slightly shallower than the relation for earlier
spectral type objects and yields warmer low-mass disks. The two prescriptions
cross at 0.27 L, corresponding to masses between 0.1 and 0.2 M
depending on age.Comment: 9 pages,6 figures, accepted to ApJ on 26/01/201
Variability in determining sepsis time zero and bundle compliance rates for the centers for medicare and medicaid services SEP-1 measure
The Taurus Boundary of Stellar/Substellar (TBOSS) Survey II. Disk Masses from ALMA Continuum Observations
We report 885m ALMA continuum flux densities for 24 Taurus members
spanning the stellar/substellar boundary, with spectral types from M4 to M7.75.
Of the 24 systems, 22 are detected at levels ranging from 1.0-55.6 mJy. The two
non-detections are transition disks, though other transition disks in the
sample are detected. Converting ALMA continuum measurements to masses using
standard scaling laws and radiative transfer modeling yields dust mass
estimates ranging from 0.3-20M. The dust mass shows a
declining trend with central object mass when combined with results from
submillimeter surveys of more massive Taurus members. The substellar disks
appear as part of a continuous sequence and not a distinct population. Compared
to older Upper Sco members with similar masses across the substellar limit, the
Taurus disks are brighter and more massive. Both Taurus and Upper Sco
populations are consistent with an approximately linear relationship in
to , although derived power-law slopes depend strongly
upon choices of stellar evolutionary model and dust temperature relation. The
median disk around early M-stars in Taurus contains a comparable amount of mass
in small solids as the average amount of heavy elements in Kepler planetary
systems on short-period orbits around M-dwarf stars, with an order of magnitude
spread in disk dust mass about the median value. Assuming a gas:dust ratio of
100:1, only a small number of low-mass stars and brown dwarfs have a total disk
mass amenable to giant planet formation, consistent with the low frequency of
giant planets orbiting M-dwarfs.Comment: 41 pages and 32 figures, with all tables and appendices presented
here in their entirety. Accepted for publication in AJ (November 26, 2017
Submillimeter observations of IRAS and WISE debris disk candidates
A set of six debris disk candidates identified with IRAS or WISE excesses were observed at either 350 μm or 450 μm with the Caltech Submillimeter Observatory. Five of the targets – HIP 51658, HIP 68160, HIP 73512, HIP 76375, and HIP 112460 – have among the largest measured excess emission from cold dust from IRAS in the 25–100 μm bands. Single temperature blackbody fits to the excess dust emission of these sources predict 350–450 μm fluxes above 240 mJy. The final target – HIP 73165 – exhibits weak excess emission above the stellar photosphere from WISE measurements at 22 μm, indicative of a population of warm circumstellar dust. None of the six targets were detected, with 3σ upper limits ranging from 51–239 mJy. These limits are significantly below the expected fluxes from SED fitting. Two potential causes of the null detections were explored – companion stars and contamination. To investigate the possible influence of companion stars, imaging data were analyzed from new adaptive optics data from the ARIES instrument on the 6.5 m MMT and archival HST, Gemini NIRI, and POSS/2MASS data. The images are sensitive to all stellar companions beyond a radius of 1–94 AU, with the inner limit depending on the distance and brightness of each target. One target is identified as a binary system, but with a separation too large to impact the disk. While the gravitational effects of a companion do not appear to provide an explanation for the submm upper limits, the majority of the IRAS excess targets show evidence for contaminating sources, based on investigation of higher resolution WISE and archival Spitzer and Herschel images. Finally, the exploratory submm measurements of the WISE excess source suggest that the hot dust present around these targets is not matched by a comparable population of colder, outer dust. More extensive and more sensitive Herschel observations of WISE excess sources will build upon this initial example to further define the characteristics of warm debris disks sources
Two-photon quantum walks in an elliptical direct-write waveguide array
Integrated optics provides an ideal test bed for the emulation of quantum
systems via continuous-time quantum walks. Here we study the evolution of
two-photon states in an elliptic array of waveguides. We characterise the
photonic chip via coherent-light tomography and use the results to predict
distinct differences between temporally indistinguishable and distinguishable
two-photon inputs which we then compare with experimental observations. Our
work highlights the feasibility for emulation of coherent quantum phenomena in
three-dimensional waveguide structures.Comment: 8 pages, 7 figure
Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527
The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM),
enabling interferometric resolution in complement to its coronagraphic
capabilities. The NRM operates both in spectroscopic (integral field
spectrograph, henceforth IFS) and polarimetric configurations. NRM observations
were taken between 2013 and 2016 to characterize its performance. Most
observations were taken in spectroscopic mode with the goal of obtaining
precise astrometry and spectroscopy of faint companions to bright stars. We
find a clear correlation between residual wavefront error measured by the AO
system and the contrast sensitivity by comparing phase errors in observations
of the same source, taken on different dates. We find a typical 5-
contrast sensitivity of at . We explore the
accuracy of spectral extraction of secondary components of binary systems by
recovering the signal from a simulated source injected into several datasets.
We outline data reduction procedures unique to GPI's IFS and describe a newly
public data pipeline used for the presented analyses. We demonstrate recovery
of astrometry and spectroscopy of two known companions to HR 2690 and HD
142527. NRM+polarimetry observations achieve differential visibility precision
of in the best case. We discuss its limitations on
Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects
for future upgrades. We summarize lessons learned in observing with NRM in
spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure
- …
