15,747 research outputs found
Aluminum chlorine battery Quarterly report
High energy density battery based on aluminum and chlorine carbon electrode
Probing the galactic halo with ROSAT
We discuss the current status of ROSAT shadowing observations designed to search for emission from million degree gas in the halo of the Milky Way galaxy. Preliminary results indicate that million degree halo gas is observed in the 1/4 keV band in some directions, most notably toward the Draco cloud at (l,b) = (92 deg, +38 deg), but that the halo emission is patchy and highly anisotropic. Our current understanding of this halo emission is based on a small handful of observations which have been analyzed to date. Many more observations are currently being analyzed or are scheduled for observation within the next year, and we expect our understanding of this component of the galactic halo to improve dramatically in the near future
Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?
We perform the first self-consistent, time-dependent, multi-group
calculations in two dimensions (2D) to address the consequences of using the
ray-by-ray+ transport simplification in core-collapse supernova simulations.
Such a dimensional reduction is employed by many researchers to facilitate
their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements
multi-D transport, and can, by zeroing out transverse flux terms, emulate the
ray-by-ray+ scheme. Using the same microphysics, initial models, resolution,
and code, we compare the results of simulating 12-, 15-, 20-, and
25-M progenitor models using these two transport methods. Our
findings call into question the wisdom of the pervasive use of the ray-by-ray+
approach. Employing it leads to maximum post-bounce/pre-explosion shock radii
that are almost universally larger by tens of kilometers than those derived
using the more accurate scheme, typically leaving the post-bounce matter less
bound and artificially more "explodable." In fact, for our 25-M
progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D
transport model does not. Therefore, in two dimensions the combination of
ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D
supernova dynamics can result in quantitatively, and perhaps qualitatively,
incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.
Dimension as a Key to the Neutrino Mechanism of Core-Collapse Supernova Explosions
We explore the dependence on spatial dimension of the viability of the
neutrino heating mechanism of core-collapse supernova explosions. We find that
the tendency to explode is a monotonically increasing function of dimension,
with 3D requiring 4050\% lower driving neutrino luminosity than 1D and
1525\% lower driving neutrino luminosity than 2D. Moreover, we find
that the delay to explosion for a given neutrino luminosity is always shorter
in 3D than 2D, sometimes by many hundreds of milliseconds. The magnitude of
this dimensional effect is much larger than the purported magnitude of a
variety of other effects, such as nuclear burning, inelastic scattering, or
general relativity, which are sometimes invoked to bridge the gap between the
current ambiguous and uncertain theoretical situation and the fact of robust
supernova explosions. Since real supernovae occur in three dimensions, our
finding may be an important step towards unraveling one of the most problematic
puzzles in stellar astrophysics. In addition, even though in 3D we do see
pre-explosion instabilities and blast asymmetries, unlike the situation in 2D,
we do not see an obvious axially-symmetric dipolar shock oscillation. Rather,
the free energy available to power instabilites seems to be shared by more and
more degrees of freedom as the dimension increases. Hence, the strong dipolar
axisymmetry seen in 2D and previously identified as a fundamental
characteristic of the shock hydrodynamics may not survive in 3D as a prominent
feature.Comment: Accepted to ApJ July 7th, Replaced with accepted versio
Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles.
The new Section 23 of DO160C/ED14C lightning testing of externally mounted electrical equipment
The new Section 23 is introduced which has only very recently been fully approved by the RTCA for incorporation into the first revision of DO160C/ED14C. Full threat lightning direct effects testing of equipment is entirely new to DO160, the only existing lightning testing is transient testing for LRU's (Line Replaceable Units) by pin or cable bundle injection methods, for equipment entirely contained within the airframe and assumed to be unaffected by direct effects. This testing required transients of very low amplitude compared with lightning itself, whereas the tests now to be described involve full threat lightning testing, that is using the previously established severe parameters of lightning appropriate to the Zone, such as 200 kA for Zone 1A as in AC20-136. Direct effects (i.e., damage) testing involves normally the lightning current arc attaching to the object under test (or very near to it) so submitting it to full potential for the electric, mechanical, thermal and shock damage which is caused by high current arcing. Since equipment for any part of the airframe require qualification, tests to demonstrate safety of equipment in fuel vapor regions of the airframe are also included
Analysis of the X-ray Emission of Nine Swift Afterglows
The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A,
050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a
steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower
t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a
t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of
relativistic blast-waves (spherical outflows, non-spreading jets, and spreading
jets), two possible dynamical regimes for the forward shock (adiabatic and
fully radiative), and we take into account a possible angular structure of the
outflow and delayed energy injection in the blast-wave, to identify the models
which reconcile the X-ray light-curve decay with the slope of the X-ray
continuum for each of the above three afterglow phases. By piecing together the
various models for each phase in a way that makes physical sense, we identify
possible models for the entire X-ray afterglow. The major conclusion of this
work is that a long-lived episode of energy injection in the blast-wave, during
which the shock energy increases at t^{1.0+/-0.5}, is required for five
afterglows and could be at work in the other four as well. Optical observations
in conjunction with the X-ray can distinguish among these various models. Our
simple tests allow the determination of the location of the cooling frequency
relative to the X-ray domain and, thus, of the index of the electron power-law
distribution with energy in the blast-wave. The resulting indices are clearly
inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA
Comment on "Pulsar Velocities and Neutrino Oscillations"
In a recent Letter, Kusenko and Segre proposed a new mechanism to explain the
observed proper motions of pulsars. Their mechanism was based on the asymmetric
neutrino emission induced by neutrino oscillations in the protoneutron star
magnetic field. In this note I point out that their estimate of the asymmetry
in the neutrino emission is incorrect. A proper calculation shows that their
mechanism at least requires a magnetic field of 10**16 G in order to produce
the observed average pulsar velocity.Comment: 4 pages, RevTe
Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data
We present theoretical atmosphere, spectral, and light-curve models for
extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it
Spitzer} planet/star contrast ratios or light curves have been published (circa
June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD
179949b, and And b. By comparing models with data, we find that a
number of EGP atmospheres experience thermal inversions and have stratospheres.
This is particularly true for HD 209458b, HD 149026b, and And b.
This finding translates into qualitative changes in the planet/star contrast
ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover,
the presence of atmospheric water in abundance is fully consistent with all the
{\it Spitzer} data for the measured planets. For planets with stratospheres,
water absorption features invert into emission features and mid-infrared fluxes
can be enhanced by a factor of two. In addition, the character of near-infrared
planetary spectra can be radically altered. We derive a correlation between the
importance of such stratospheres and the stellar flux on the planet, suggesting
that close-in EGPs bifurcate into two groups: those with and without
stratospheres. From the finding that TrES-1 shows no signs of a stratosphere,
while HD 209458b does, we estimate the magnitude of this stellar flux
breakpoint. We find that the heat redistribution parameter, P, for the
family of close-in EGPs assumes values from 0.1 to 0.4. This paper
provides a broad theoretical context for the future direct characterization of
EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8
figures, many with multiple panel
- …
