1,450 research outputs found
Crop expansion and conservation priorities in tropical countries
Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock
Hot and Diffuse Clouds near the Galactic Center Probed by Metastable H3+
Using an absorption line from the metastable (J, K) = (3, 3) level of H3+
together with other lines of H3+ and CO observed along several sightlines, we
have discovered a vast amount of high temperature (T ~ 250 K) and low density
(n ~ 100 cm-3) gas with a large velocity dispersion in the Central Molecular
Zone (CMZ) of the Galaxy, i.e., within 200 pc of the center. Approximately
three fourths of the H3+ along the line of sight to the brightest source we
observed, the Quintuplet object GCS 3-2, is inferred to be in the CMZ, with the
remaining H3+ located in intervening spiral arms. About half of H3+ in the CMZ
has velocities near ~ - 100 km s-1 indicating that it is associated with the
180 pc radius Expanding Molecular Ring which approximately forms outer boundary
of the CMZ. The other half, with velocities of ~ - 50 km s-1 and ~ 0 km s-1, is
probably closer to the center. CO is not very abundant in those clouds. Hot and
diffuse gas in which the (3, 3) level is populated was not detected toward
several dense clouds and diffuse clouds in the Galactic disk where large column
densities of colder H3+ have been reported previously. Thus the newly
discovered environment appears to be unique to the CMZ. The large observed H3+
column densities in the CMZ suggests an ionization rate much higher than in the
diffuse interstellar medium in the Galactic disk. Our finding that the H3+ in
the CMZ is almost entirely in diffuse clouds indicates that the reported volume
filling factor (f ≥ 0.1) for n ≥ 104 cm-3 clouds in the CMZ is an
overestimate by at least an order of magnitude.Comment: 33 pages, 5 figures, 3 table
A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures
International audienceA Global 40-year simulation from 1980 to 2019 was performed with the FinROSE chemistry-transport model based on the use of coupled chemistry GCM-data. The main focus of our analysis is on climatological-scale processes in high latitudes. The resulting trend estimates for the past period (1980?1999) agree well with observation-based trend estimates. The results for the future period (2000?2019) suggest that the extent of seasonal ozone depletion over both northern and southern high-latitudes has likely reached its maximum. Furthermore, while climate change is expected to cool the stratosphere, this cooling is unlikely to accelerate significantly high latitude ozone depletion. However, the recovery of seasonal high latitude ozone losses will not take place during the next 15 years
Employment mobility in high-technology agglomerations: the cases of Oxfordshire and Cambridgeshire
This paper examines labour market behaviour of the highly skilled in high-tech local economies, taking the UK examples of Oxfordshire and Cambridgeshire as case studies. It reports on data from a survey of members of three scientific institutes to compare rates of employee mobility in the two locations and considers the likely explanations and implications of those patterns
Recommended from our members
Systematic model forecast error in Rossby wave structure
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes
Micro-evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion
Almost 90% of global bird extinctions have occurred on islands. The loss of endemic spe- cies from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th cen- tury, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced coloni- zation by highly invasive parrots, such as the Ring-necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in spe- cies composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmen- tal and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Sey- chelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non-endemic invasive forms such as the Ring-necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appro- priate ecological replacements for the extinct parrots. Such replacements may be intro- duced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity
Multimodel climate and variability of the stratosphere
The stratospheric climate and variability from simulations of sixteen chemistryclimate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar
temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated
for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH
vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere.
Quantitatively, �metrics� indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long�standing model problems, particularly related to the simulation of the SH
and stratospheric variability
- …
