358 research outputs found
Bibliometrics of systematic reviews : analysis of citation rates and journal impact factors
Background:
Systematic reviews are important for informing clinical practice and health policy. The aim of this study was to examine the bibliometrics of systematic reviews and to determine the amount of variance in citations predicted by the journal impact factor (JIF) alone and combined with several other characteristics.
Methods:
We conducted a bibliometric analysis of 1,261 systematic reviews published in 2008 and the citations to them in the Scopus database from 2008 to June 2012. Potential predictors of the citation impact of the reviews were examined using descriptive, univariate and multiple regression analysis.
Results:
The mean number of citations per review over four years was 26.5 (SD +/-29.9) or 6.6 citations per review per year. The mean JIF of the journals in which the reviews were published was 4.3 (SD +/-4.2). We found that 17% of the reviews accounted for 50% of the total citations and 1.6% of the reviews were not cited. The number of authors was correlated with the number of citations (r = 0.215, P =5.16) received citations in the bottom quartile (eight or fewer), whereas 9% of reviews published in the lowest JIF quartile (<=2.06) received citations in the top quartile (34 or more). Six percent of reviews in journals with no JIF were also in the first quartile of citations.
Conclusions:
The JIF predicted over half of the variation in citations to the systematic reviews. However, the distribution of citations was markedly skewed. Some reviews in journals with low JIFs were well-cited and others in higher JIF journals received relatively few citations; hence the JIF did not accurately represent the number of citations to individual systematic reviews
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
An empirical mean-field model of symmetry-breaking in a turbulent wake
Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high-Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
Nonlinear stochastic modelling with Langevin regression
Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behaviour are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behaviour to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using forward and adjoint Fokker–Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by coloured noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply Langevin regression to experimental measurements of a turbulent bluff body wake and show that the statistical behaviour of the centre of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise
PySINDy: A comprehensive Python package for robust sparse system identification
Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools for applying the sparse identification of nonlinear dynamics (SINDy) approach to data-driven model discovery. In this major update to PySINDy, we implement several advanced features that enable the discovery of more general differential equations from noisy and limited data. The library of candidate terms is extended for the identification of actuated systems, partial differential equations (PDEs), and implicit differential equations. Robust formulations, including the integral form of SINDy and ensembling techniques, are also implemented to improve performance for real-world data. Finally, we provide a range of new optimization algorithms, including several sparse regression techniques and algorithms to enforce and promote inequality constraints and stability. Together, these updates enable entirely new SINDy model discovery capabilities that have not been reported in the literature, such as constrained PDE identification and ensembling with different sparse regression optimizers
Brazilian medical publications: citation patterns for Brazilian-edited and non-Brazilian literature
Forest City/University Hospitals Telemedicine System Project Evaluation: Progress Report II
In June 1974, a task force comprised of faculty from the School of Medicine and faculty and graduate students from the Department of Operations Research, Case Western Reserve University, in association with the staff of Forest City Hospital, Cleveland, initiated an evaluation study of a proposed Telemedicine Link between University Hospitals of Cleveland and Forest City Hospital. The different stages of the Telemedicine study completed to date are: a definition of the project goals and objectives; formulation of parameters relevant to an evaluation of Telemedicine\u27s impact on the quality of care delivered; design of data gathering instruments; and, finally, the collection of data itself. This report documents progress through each of the above stages. Since the study is ongoing, this is an interim report, reflecting the current status of the evaluation. The report concludes by indicating what further work remains to be done to complete the study
- …
