22,349 research outputs found

    Identifying structures in the continuum: Application to 16^{16}Be

    Full text link
    The population and decay of two-nucleon resonances offer exciting new opportunities to explore dripline phenomena. The understanding of these systems requires a solid description of the three-body (core+N+N) continuum. The identification of a state with resonant character from the background of non-resonant continuum states in the same energy range poses a theoretical challenge. It is the purpose of this work to establish a robust theoretical framework to identify and characterize three-body resonances in a discrete basis. A resonance operator is proposed, which describes the sensitivity to changes in the potential. Resonances are then identified from the lowest eigenstates of the resonance operator. The operator is diagonalized in a basis of Hamiltonian pseudostates, built within the hyperspherical harmonics formalism using the analytical THO basis. The energy and width of the resonance are determined from its time dependence. The method is applied to 16Be in a 14Be+n+n model. An effective core+n potential, fitted to the available information on the subsystem 15Be, is employed. The 0+ ground state resonance of 16Be presents a strong dineutron configuration, which favors the picture of a correlated two-neutron emission. Fitting the three body interaction to the experimental two-neutron separation energy |S2n|=1.35(10) MeV, the computed width is Gamma(0+)=0.16 MeV. From the same Hamiltonian, a 2+ resonance is also predicted with E_r(2+)=2.42 MeV and Gamma(2+)=0.40 MeV. The dineutron configuration and the computed 0+ width are consistent with previous R-matrix calculations for the true three-body continuum. The extracted values of the resonance energy and width converge with the size of the pseudostate basis and are robust under changes in the basis parameters. This supports the reliability of the method in describing the properties of unbound core+N+N systems in a discrete basis.Comment: 11 pages, 14 figures. Accepted as PR

    Comment on "Chain Length Scaling of Protein Folding Time", PRL 77, 5433 (1996)

    Full text link
    In a recent Letter, Gutin, Abkevich, and Shakhnovich (GAS) reported on a series of dynamical Monte Carlo simulations on lattice models of proteins. Based on these highly simplified models, they found that four different potential energies lead to four different folding time scales tau_f, where tau_f scales with chain length as N^lambda (see, also, Refs. [2-4]), with lambda varying from 2.7 to 6.0. However, due to the lack of microscopic models of protein folding dynamics, the interpretation and origin of the data have remained somewhat speculative. It is the purpose of this Comment to point out that the application of a simple "mesoscopic" model (cond-mat/9512019, PRL 77, 2324, 1996) of protein folding provides a full account of the data presented in their paper. Moreover, we find a major qualitative disagreement with the argumentative interpretation of GAS. Including, the origin of the dynamics, and size of the critical folding nucleus.Comment: 1 page Revtex, 1 fig. upon request. Submitted to PR

    Wear of a chute in a rice sorting machine

    Get PDF
    In a rice sorting machine, rice grains drop onto and slide down an anodised aluminium chute. The purpose of the chute is to separate the grains and provide a controlled distribution. At the bottom of the chute the grains are examined optically and contaminants or defective grains are removed from the stream by jets of air. The machine has the ability to sort low quality rice which contains a large element of contaminants such as husk. The husk is extremely abrasive and this, along with other factors, can lead to a reduction in the life of the chute by wear of the surface. In this work a failure analysis process was undertaken to establish the nature and causes of the chute surface wear and the mechanisms of material removal. Wear occurs initially at the location where the grains first strike the chute and at subsequent regions down the chute where bounce occurs. An experimental and analytical examination of the rice motion on impacting the chute was also carried out along with some friction testing of potential replacement chute materials. The evidence gathered during the failure analysis along with the experimental analysis was used to propose possible material/design improvements

    Scarcity may promote cooperation in populations of simple agents

    Get PDF
    In the study of the evolution of cooperation, resource limitations are usually assumed just to provide a finite population size. Recently, however, it has been pointed out that resource limitation may also generate dynamical payoffs able to modify the original structure of the games. Here we study analytically a phase transition from a homogeneous population of defectors when resources are abundant to the survival of unconditional cooperators when resources reduce below a threshold. To this end, we introduce a model of simple agents, with no memory or ability of recognition, interacting in well-mixed populations. The result might shed light on the role played by resource constraints on the origin of multicellularity.Comment: 5 pages, 2 figure

    A Criterion That Determines Fast Folding of Proteins: A Model Study

    Full text link
    We consider the statistical mechanics of a full set of two-dimensional protein-like heteropolymers, whose thermodynamics is characterized by the coil-to-globular (TθT_\theta) and the folding (TfT_f) transition temperatures. For our model, the typical time scale for reaching the unique native conformation is shown to scale as τfF(M)exp(σ/σ0)\tau_f\sim F(M)\exp(\sigma/\sigma_0), where σ=1Tf/Tθ\sigma=1-T_f/T_\theta, MM is the number of residues, and F(M)F(M) scales algebraically with MM. We argue that TfT_f scales linearly with the inverse of entropy of low energy non-native states, whereas TθT_\theta is almost independent of it. As σ0\sigma\rightarrow 0, non-productive intermediates decrease, and the initial rapid collapse of the protein leads to structures resembling the native state. Based solely on {\it accessible} information, σ\sigma can be used to predict sequences that fold rapidly.Comment: 10 pages, latex, figures upon reques

    Influence of oxygen pressure on the fs laserinduced oxidation of molybdenum thin films

    Get PDF
    We present a study of femtosecond (1028 nm, 230 fs, 54.7 MHz) laser processing on molybdenum (Mo) thin films. Irradiations were done under ambient air as well as pure oxygen (O2) at various gauge pressures (4, 8, 12 and 16 psi). Our results indicate that the high heating rates associated with laser processing allow the production of different molybdenum oxides. Raman spectroscopy and scanning electron microscopy are used to characterize the molybdenum oxidation for the different irradiation and oxygen pressures parameters chosen showing a high correlation between well-defined oxidation zones and the oxygen pressure surrounding the samples during the irradiation of the Mo thin films

    From Collapse to Freezing in Random Heteropolymers

    Full text link
    We consider a two-letter self-avoiding (square) lattice heteropolymer model of N_H (out ofN) attracting sites. At zero temperature, permanent links are formed leading to collapse structures for any fraction rho_H=N_H/N. The average chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H --> 0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H < 1, entropy approaches zero as N --> infty (being finite for a homopolymer). An abrupt decrease in entropy occurs at the phase boundary between the swollen (R ~ N^nu) and collapsed region. Scaling arguments predict different regimes depending on the ensemble of crosslinks. Some implications to the protein folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis. Submitted to Europhys.Let
    corecore