1,727 research outputs found
Partial Enumerative Sphere Shaping
The dependency between the Gaussianity of the input distribution for the
additive white Gaussian noise (AWGN) channel and the gap-to-capacity is
discussed. We show that a set of particular approximations to the
Maxwell-Boltzmann (MB) distribution virtually closes most of the shaping gap.
We relate these symbol-level distributions to bit-level distributions, and
demonstrate that they correspond to keeping some of the amplitude bit-levels
uniform and independent of the others. Then we propose partial enumerative
sphere shaping (P-ESS) to realize such distributions in the probabilistic
amplitude shaping (PAS) framework. Simulations over the AWGN channel exhibit
that shaping 2 amplitude bits of 16-ASK have almost the same performance as
shaping 3 bits, which is 1.3 dB more power-efficient than uniform signaling at
a rate of 3 bit/symbol. In this way, required storage and computational
complexity of shaping are reduced by factors of 6 and 3, respectively.Comment: 6 pages, 6 figure
From chemical Langevin equations to Fokker-Planck equation: application of Hodge decomposition and Klein-Kramers equation
The stochastic systems without detailed balance are common in various
chemical reaction systems, such as metabolic network systems. In studies of
these systems, the concept of potential landscape is useful. However, what are
the sufficient and necessary conditions of the existence of the potential
function is still an open problem. Use Hodge decomposition theorem in
differential form theory, we focus on the general chemical Langevin equations,
which reflect complex chemical reaction systems. We analysis the conditions for
the existence of potential landscape of the systems. By mapping the stochastic
differential equations to a Hamiltonian mechanical system, we obtain the
Fokker-Planck equation of the chemical reaction systems. The obtained
Fokker-Planck equation can be used in further studies of other steady
properties of complex chemical reaction systems, such as their steady state
entropies.Comment: 6 pages, 0 figure, submitted to J. Phys. A: Math. Theo
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
Optimal quantum codes for preventing collective amplitude damping
Collective decoherence is possible if the departure between quantum bits is
smaller than the effective wave length of the noise field. Collectivity in the
decoherence helps us to devise more efficient quantum codes. We present a class
of optimal quantum codes for preventing collective amplitude damping to a
reservoir at zero temperature. It is shown that two qubits are enough to
protect one bit quantum information, and approximately qubits are enough to protect qubit information when is large.
For preventing collective amplitude damping, these codes are much more
efficient than the previously-discovered quantum error correcting or avoiding
codes.Comment: 14 pages, Late
Experimental measurement-based quantum computing beyond the cluster-state model
The paradigm of measurement-based quantum computation opens new experimental
avenues to realize a quantum computer and deepens our understanding of quantum
physics. Measurement-based quantum computation starts from a highly entangled
universal resource state. For years, clusters states have been the only known
universal resources. Surprisingly, a novel framework namely quantum computation
in correlation space has opened new routes to implement measurement-based
quantum computation based on quantum states possessing entanglement properties
different from cluster states. Here we report an experimental demonstration of
every building block of such a model. With a four-qubit and a six-qubit state
as distinct from cluster states, we have realized a universal set of
single-qubit rotations, two-qubit entangling gates and further Deutsch's
algorithm. Besides being of fundamental interest, our experiment proves
in-principle the feasibility of universal measurement-based quantum computation
without using cluster states, which represents a new approach towards the
realization of a quantum computer.Comment: 26 pages, final version, comments welcom
- …
