34,936 research outputs found

    Temperature controller for a fluid cooled garment

    Get PDF
    An automatic controller for controlling the inlet temperature of the coolant to a fluid cooled garment without requiring skin sensors is described. Temperature is controlled by the wearer's evaporative water loss rate

    Hamiltonian model of capture into mean motion resonance

    Full text link
    Mean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. Full details can be found in \cite{2010submitted}. (Abridged)Comment: 4 pages, Proceedings of IAUS276 "The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution

    Results of recent NASA studies on automatic spin prevention for fighter aircraft

    Get PDF
    A broad based research program was developed to eliminate or minimize inadvertent spins for advanced military aircraft. Recent piloted simulator studies and airplane flight tests have demonstrated that the automatic control systems in use on current fighters can be tailored to provide a high degree of spin resistance for some configurations without restrictions to maneuverability. Such systems result in greatly increased tactical effectiveness, safety, and pilot confidence

    Survival of Terrestrial Planets in the Presence of Giant Planet Migration

    Full text link
    The presence of ``Hot Jupiters'', Jovian mass planets with very short orbital periods orbiting nearby main sequence stars, has been proposed to be primarily due to the orbital migration of planets formed in orbits initially much further from the parent star. The migration of giant planets would have profound effects on the evolution of inner terrestrial planets in these systems, and previous analyses have assumed that no terrestrial planets survive after migration has occurred. We present numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process, eventually returning to circular orbits relatively close to their original positions. A fraction of the final orbits are in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars.Comment: 5 pages, 3 figures, emulateapj. ApJL in press, referee comments changes and edited for lengt

    A decreased probability of habitable planet formation around low-mass stars

    Get PDF
    Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain the substantial atmospheres and ongoing tectonic activity probably required to support life. A key element in determining if sufficiently massive "sustainably habitable" planets can form is the availability of solid planet-forming material. We use dynamical simulations of terrestrial planet formation from planetary embryos and simple scaling arguments to explore the implications of correlations between terrestrial planet mass, disk mass, and the mass of the parent star. We assume that the protoplanetary disk mass scales with stellar mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h < 2, so that disk mass decreases with decreasing stellar mass. We consider systems without Jovian planets, based on current models and observations for M stars. We assume the mass of a planet formed in some annulus of a disk with given parameters is proportional to the disk mass in that annulus, and show with a suite of simulations of late-stage accretion that the adopted prescription is surprisingly accurate. Our results suggest that the fraction of systems with sufficient disk mass to form > 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure

    Adding Contextual Information to Intrusion Detection Systems Using Fuzzy Cognitive Maps

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the last few years there has been considerable increase in the efficiency of Intrusion Detection Systems (IDSs). However, networks are still the victim of attacks. As the complexity of these attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of IDSs should be designed incorporating reasoning engines supported by contextual information about the network, cognitive information and situational awareness to improve their detection results. In this paper, we propose the use of a Fuzzy Cognitive Map (FCM) in conjunction with an IDS to incorporate contextual information into the detection process. We have evaluated the use of FCMs to adjust the Basic Probability Assignment (BPA) values defined prior to the data fusion process, which is crucial for the IDS that we have developed. The experimental results that we present verify that FCMs can improve the efficiency of our IDS by reducing the number of false alarms, while not affecting the number of correct detections

    A study of the thermoregulatory characteristics of a liquid-cooled garment with automatic temperature control based on sweat rate: Experimental investigation and biothermal man-model development

    Get PDF
    Experimental results for three subjects walking on a treadmill at exercise rates of up to 590 watts showed that thermal comfort could be maintained in a liquid cooled garment by using an automatic temperature controller based on sweat rate. The addition of head- and neck-cooling to an Apollo type liquid cooled garment increased its effectiveness and resulted in greater subjective comfort. The biothermal model of man developed in the second portion of the study utilized heat rates and exchange coefficients based on the experimental data, and included the cooling provisions of a liquid-cooled garment with automatic temperature control based on sweat rate. Simulation results were good approximations of the experimental results

    Pseudo-High-Order Symplectic Integrators

    Get PDF
    Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6 substeps per timestep, respectively. The number of substeps increases rapidly with order in timestep, rendering higher-order methods impractical. However, symplectic integrators are often applied to systems in which perturbations between bodies are a small factor of the force due to a dominant central mass. In this case, it is possible to create optimized symplectic algorithms that require fewer substeps per timestep. This is achieved by only considering error terms of order epsilon, and neglecting those of order epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which effectively behave as 4th and 6th-order integrators when epsilon is small. These algorithms are more efficient than the usual 2nd and 4th-order methods when applied to planetary systems.Comment: 14 pages, 5 figures. Accepted for publication in the Astronomical Journa
    corecore