2,932 research outputs found
A multi-sensor system for robotics proximity operations
Robots without sensors can perform only simple repetitive tasks and cannot cope with unplanned events. A multi-sensor system is needed for a robot to locate a target, move into its neighborhood and perform operations in contact with the object. Systems that can be used for such tasks are described
Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 1: Analysis and design of stages A, B, and C
A conventional rotor and stator, two dual-airfoil tandem rotors, and one dual-airfoil tandem stator were designed. The two tandem rotors were each designed with different percentages of the overall lift produced by the front airfoil. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. Rotor inlet hub/tip ratio was 0.8. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.30, respectively
Multiple cyclotron line-forming regions in GX 301-2
We present two observations of the high-mass X-ray binary GX 301-2 with
NuSTAR, taken at different orbital phases and different luminosities. We find
that the continuum is well described by typical phenomenological models, like a
very strongly absorbed NPEX model. However, for a statistically acceptable
description of the hard X-ray spectrum we require two cyclotron resonant
scattering features (CRSF), one at ~35 keV and the other at ~50 keV. Even
though both features strongly overlap, the good resolution and sensitivity of
NuSTAR allows us to disentangle them at >=99.9% significance. This is the first
time that two CRSFs are seen in GX 301-2. We find that the CRSFs are very
likely independently formed, as their energies are not harmonically related
and, if it were a single line, the deviation from a Gaussian shape would be
very large. We compare our results to archival Suzaku data and find that our
model also provides a good fit to those data. We study the behavior of the
continuum as well as the CRSF parameters as function of pulse phase in seven
phase bins. We find that the energy of the 35 keV CRSF varies smoothly as
function of phase, between 30-38 keV. To explain this variation, we apply a
simple model of the accretion column, taking the altitude of the line-forming
region, the velocity of the in-falling material, and the resulting relativistic
effects into account. We find that in this model the observed energy variation
can be explained simply due to a variation of the projected velocity and
beaming factor of the line forming region towards us.Comment: 18 pages, 10 figures, accepted for publication in A&
Using Pilot Systems to Execute Many Task Workloads on Supercomputers
High performance computing systems have historically been designed to support
applications comprised of mostly monolithic, single-job workloads. Pilot
systems decouple workload specification, resource selection, and task execution
via job placeholders and late-binding. Pilot systems help to satisfy the
resource requirements of workloads comprised of multiple tasks. RADICAL-Pilot
(RP) is a modular and extensible Python-based pilot system. In this paper we
describe RP's design, architecture and implementation, and characterize its
performance. RP is capable of spawning more than 100 tasks/second and supports
the steady-state execution of up to 16K concurrent tasks. RP can be used
stand-alone, as well as integrated with other application-level tools as a
runtime system
Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling
Electron cyclotron resonant scattering features (CRSFs) are observed as
absorption-like lines in the spectra of X-ray pulsars. A significant fraction
of the computing time for Monte Carlo simulations of these quantum mechanical
features is spent on the calculation of the mean free path for each individual
photon before scattering, since it involves a complex numerical integration
over the scattering cross section and the (thermal) velocity distribution of
the scattering electrons.
We aim to numerically calculate interpolation tables which can be used in
CRSF simulations to sample the mean free path of the scattering photon and the
momentum of the scattering electron. The tables also contain all the
information required for sampling the scattering electron's final spin.
The tables were calculated using an adaptive Simpson integration scheme. The
energy and angle grids were refined until a prescribed accuracy is reached. The
tables are used by our simulation code to produce artificial CRSF spectra. The
electron momenta sampled during these simulations were analyzed and justified
using theoretically determined boundaries.
We present a complete set of tables suited for mean free path calculations of
Monte Carlo simulations of the cyclotron scattering process for conditions
expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12,
where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables
is chosen such that the results have an estimated relative error of at most
1/15 for all points in the grid. The tables are available online at
http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres
Recommended from our members
Spontaneous otoacoustic emissions in TectaY1870C/+ mice reflect changes in cochlear amplification and how it is controlled by the tectorial membrane
Spontaneous otoacoustic emissions (SOAEs) recorded from the ear canal in the absence of sound reflect cochlear amplification, an outer-hair-cell (OHC) process required for the extraordinary sensitivity and frequency selectivity of mammalian hearing. Although wild-type mice rarely emit, those with mutations that influence the tectorial membrane (TM) show an incidence of SOAEs similar to that in humans. In this report, we characterized mice with a missense mutation in Tecta, a gene required for the formation of the striated-sheet matrix within the core of the TM. Mice heterozygous for the Y1870C mutation (TectaY1870C/+) are prolific emitters, despite a moderate hearing loss. Additionally, Kimura’s membrane, into which the OHC stereocilia insert, separates from the main body of the TM, except at apical cochlear locations. Multimodal SOAEs are also observed in TectaY1870C/+ mice where energy is present at frequencies that are integer multiples of a lower-frequency SOAE (the primary). Second-harmonic SOAEs, at twice the frequency of a lower-frequency primary, are the most frequently observed. These secondary SOAEs are found in spatial regions where stimulus-evoked OAEs are small or in the noise floor. Introduction of high-level suppressors just above the primary SOAE frequency reduce or eliminate both primary and second-harmonic SOAEs. In contrast, second-harmonic SOAEs are not affected by suppressors, either above or below the second-harmonic SOAE frequency, even when they are much larger in amplitude. Hence, second-harmonic SOAEs do not appear to be spatially separated from their primaries, a finding that has implications for cochlear mechanics and the consequences of changes to TM structure
A clinician’s guide to management of intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
Accelerated age-related degradation of the tectorial membrane in the Ceacam16 βgal/βgal null mutant mouse, a model for late-onset human hereditary deafness DFNB113
CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16 βgal/βgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/βgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/βgal and Ceacam16βgal/βgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16βgal/βgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16βgal/βgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ~12 months, SOAEs and DPOAEs are not detected in Ceacam16βgal/βgal mice and ABR thresholds are increased by up to ~40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16βgal/βgal mice, it increases in ageing heterozygous Ceacam16+/βgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16βgal/βgal mice, is also seen in Ceacam16+/+ and Ceacam16+/βgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss
- …
