3,431 research outputs found
Velocity production in elite BMX riders: a field based study using a SRM power meter
The aim of this study was to analyze the production of velocity in bicycle motocross (BMX) compared to other cycling disciplines. Six elite BMX riders, 5 males and 1 female who competed and trained regularly for a period of 12 yrs ± 2 agreed to take part in this study. Each rider performed 3, 50-m sprint tests and a single 200 m fatigue test. The riders’ peak power, fatigue index, power to weight ratio, and cycling revolution per minute were analyzed using a Schoberer Rad Messtechnik (SRM) BMX power meter. The BMX riders’ peak power and power to weight ratio were all found to be similar to those in other sprint cycling events. Peak power outputs of 1539 ± 148 W and 1030 W were recorded with mean power to weight ratios of 21.29 ± 0.84 W·kg-1 and 16.65 W·kg-1 . The BMX riders’ power fatigue index was found to be higher than other sprint events as riders fatigued at a greater rate. Mean fatigue index was 61.19 ± 5.97 W·sec-1 for the male riders and 53.04 W·sec-1 for the female rider. A notable finding of this study was the relationship of cycling cadence (rev·min-1 ), peak power (Watts) and velocity (mi·h-1 ). This relationship suggests once a BMX rider achieves peak power their pedaling cadence becomes the major contributory factor to velocity production.N/
A longitudinal, observational study examining the relationships of patient satisfaction with services and mental well-being to their clinical course in young people with Type 1 diabetes mellitus during transition from child to adult health services
AIM: We hypothesized that participant well-being and satisfaction with services would be positively associated with a satisfactory clinical course during transition from child to adult health care.
METHODS: Some 150 young people with Type 1 diabetes mellitus from five diabetes units in England were recruited to a longitudinal study of transition. Each young person was visited at home four times by a research assistant; each visit was 1 year apart. Satisfaction with services (Mind the Gap; MTG) and mental well-being (Warwick-Edinburgh Mental Well-being Scale; WEMWBS) were captured. Change in HbA1c , episodes of ketoacidosis, clinic and retinal screening attendance were used to assess clinical course. In total, 108 of 150 (72%) young people had sufficient data for analysis at visit 4.
RESULTS: Mean age at entry was 16 years. By visit 4, 81.5% had left paediatric healthcare services. Median HbA1c increased significantly (P = 0.01) from 69 mmol/mol (8.5%) at baseline to 75 mmol/mol (9.0%) at visit 4. WEMWBS scores were comparable with those in the general population at baseline and were stable over the study period. MTG scores were also stable. By visit 4, some 32 individuals had a 'satisfactory' and 76 a 'suboptimal' clinical course. There were no significant differences in average WEMWBS and MTG scores between the clinical course groups (P = 0.96, 0.52 respectively); nor was there a significant difference in transfer status between the clinical course groups.
CONCLUSIONS: The well-being of young people with diabetes and their satisfaction with transition services are not closely related to their clinical course. Investigating whether innovative psycho-educational interventions can improve the clinical course is a research priority
Yeast Features: Identifying Significant Features Shared Among Yeast Proteins for Functional Genomics
Background
High throughput yeast functional genomics experiments are revealing associations among tens to hundreds of genes using numerous experimental conditions. To fully understand how the identified genes might be involved in the observed system, it is essential to consider the widest range of biological annotation possible. Biologists often start their search by collating the annotation provided for each protein within databases such as the Saccharomyces Genome Database, manually comparing them for similar features, and empirically assessing their significance. Such tasks can be automated, and more precise calculations of the significance can be determined using established probability measures. 
Results
We developed Yeast Features, an intuitive online tool to help establish the significance of finding a diverse set of shared features among a collection of yeast proteins. A total of 18,786 features from the Saccharomyces Genome Database are considered, including annotation based on the Gene Ontology’s molecular function, biological process and cellular compartment, as well as conserved domains, protein-protein and genetic interactions, complexes, metabolic pathways, phenotypes and publications. The significance of shared features is estimated using a hypergeometric probability, but novel options exist to improve the significance by adding background knowledge of the experimental system. For instance, increased statistical significance is achieved in gene deletion experiments because interactions with essential genes will never be observed. We further demonstrate the utility by suggesting the functional roles of the indirect targets of an aminoglycoside with a known mechanism of action, and also the targets of an herbal extract with a previously unknown mode of action. The identification of shared functional features may also be used to propose novel roles for proteins of unknown function, including a role in protein synthesis for YKL075C.
Conclusions
Yeast Features (YF) is an easy to use web-based application (http://software.dumontierlab.com/yeastfeatures/) which can identify and prioritize features that are shared among a set of yeast proteins. This approach is shown to be valuable in the analysis of complex data sets, in which the extracted associations revealed significant functional relationships among the gene products.

Towards Work-Efficient Parallel Parameterized Algorithms
Parallel parameterized complexity theory studies how fixed-parameter
tractable (fpt) problems can be solved in parallel. Previous theoretical work
focused on parallel algorithms that are very fast in principle, but did not
take into account that when we only have a small number of processors (between
2 and, say, 1024), it is more important that the parallel algorithms are
work-efficient. In the present paper we investigate how work-efficient fpt
algorithms can be designed. We review standard methods from fpt theory, like
kernelization, search trees, and interleaving, and prove trade-offs for them
between work efficiency and runtime improvements. This results in a toolbox for
developing work-efficient parallel fpt algorithms.Comment: Prior full version of the paper that will appear in Proceedings of
the 13th International Conference and Workshops on Algorithms and Computation
(WALCOM 2019), February 27 - March 02, 2019, Guwahati, India. The final
authenticated version is available online at
https://doi.org/10.1007/978-3-030-10564-8_2
The role of the ER stress response protein PERK in rhodopsin retinitis pigmentosa
Mutations in rhodopsin, the light sensitive protein of rod cells, are the most common cause of dominant retinitis pigmentosa (RP), a type of inherited blindness caused by the dysfunction and death of photoreceptor cells. The P23H mutation, the most frequent single cause of RP in the USA, causes rhodopsin misfolding and induction of the unfolded protein response (UPR), an adaptive ER stress response and signalling network that aims to enhance the folding and degradation of misfolded proteins to restore proteostasis. Prolonged UPR activation, and in particular the PERK branch, can reduce protein synthesis and initiate cell death through induction of pro-apoptotic pathways. Here, we investigated the effect of pharmacological PERK inhibition on retinal disease process in the P23H-1 transgenic rat model of retinal degeneration. PERK inhibition with GSK2606414A led to an inhibition of eIF2α phosphorylation, which correlated with reduced ERG function and decreased photoreceptor survival at both high and low doses of PERK inhibitor. Additionally, PERK inhibition increased the incidence of inclusion formation in cultured cells overexpressing P23H rod opsin, and increased rhodopsin aggregation in the P23H-1 rat retina, suggesting enhanced P23H misfolding and aggregation. In contrast, treatment of P23H-1 rats with an inhibitor of eIF2α phosphatase, salubrinal, led to improved photoreceptor survival. Collectively, these data suggest the activation of PERK is part of a protective response to mutant rhodopsin that ultimately limits photoreceptor cell death
Quantum field dynamics of the slow rollover in the linear delta expansion
We show how the linear delta expansion, as applied to the slow-roll
transition in quantum mechanics, can be recast in the closed time-path
formalism. This results in simpler, explicit expressions than were obtained in
the Schr\"odinger formulation and allows for a straightforward generalization
to higher dimensions. Motivated by the success of the method in the
quantum-mechanical problem, where it has been shown to give more accurate
results for longer than existing alternatives, we apply the linear delta
expansion to four-dimensional field theory.
At small times all methods agree. At later times, the first-order linear
delta expansion is consistently higher that Hartree-Fock, but does not show any
sign of a turnover. A turnover emerges in second-order of the method, but the
value of at the
turnover. In subsequent applications of the method we hope to implement the
calculation in the context of an expanding universe, following the line of
earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and
large-N methods. It seems clear, however, that the method will become
unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including
second order calculatio
Zero mode in the time-dependent symmetry breaking of theory
We apply the quartic exponential variational approximation to the symmetry
breaking phenomena of scalar field in three and four dimensions. We calculate
effective potential and effective action for the time-dependent system by
separating the zero mode from other non-zero modes of the scalar field and
treating the zero mode quantum mechanically. It is shown that the quantum
mechanical properties of the zero mode play a non-trivial role in the symmetry
breaking of the scalar theory.Comment: 10 pages, 3 figure
- …
