531 research outputs found
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond
Objectives and Progress on Ground Vibration Testing for the Ares Launch Vehicles
NASA has conducted dynamic tests on each of its major launch vehicles during the past 45 years. Each test has provided invaluable data to correlate and correct analytical models used to predict structural responses to differing dynamics for these vehicles. With both Saturn V and Space Shuttle, hardware changes were also required to the flight vehicles to ensure crew and vehicle safety. The Ares I IVGVT will undoubtedly provide similar valuable test data to support successful flights of the Constellation Program. The IVGVT will provide test determined natural frequencies, mode shapes and damping for the Ares I. This data will be used to support controls analysis by providing this test data to reduce uncertainty in the models. The value of this testing has been proven by past launch vehicle successes and failures. Performing dynamic testing on the Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions. In addition, IVGVT will provide the following benefits for the Ares rockets: a) IVGVT data along with Ares development flights like Ares I-X, Ares I-Y, Ares I-X Prime, and Orion-1 or others will reduce the risk to the Orion-2 crew. IVGVT will permit anchoring the various analytical and operational models used in so many different aspects of Ares operations. b) IVGVT data will permit better understanding of the structural and GN&C margins of the spacecraft and may permit mass savings or expanded day-of-launch opportunities or fewer constraints to launch. c) Undoubtedly IVGVT will uncover some of the "unknown unknowns" so often seen in developing, launching, and flying new spacecraft vehicles and data from IVGVT may help prevent a loss of vehicle or crew. d) IVGVT also will be the first time Ares I flight-like hardware is transported, handled, rotated, mated, stacked, and integrated. e) Furthermore, handling and stacking the IVGVT launch vehicle stacks will be an opportunity to understand certain aspects of vehicle operability much better (for example, handling procedures, touch-labor time to accomplish tasks, access at interfaces, access to stage mating bolts, access to avionics boxes, access to the Interstage, GSE functionality, and many other important aspects of Ares I operability). All of these results will provide for better vehicle safety and better stewardship of national resources as NASA begins its next phase of human space exploration
John C. Stennis Space Center roles and missions
Space transportation propulsion systems; diagnostics testbed facility characteristics; engine plume diagnostics; and thermal infrared imaging technology development are outlined. This presentation is represented by viewgraphs
Diffusion MRI in early cancer therapeutic response assessment
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136261/1/nbm3458_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136261/2/nbm3458.pd
Sex Ratio Variation between Ejaculates Within Sire Evaluated by Polymerase Chain Reaction, Calving, and Farrowing Records
Ejaculates from sires were examined by polymerase chain reaction to determine percentage of sperm bearing the Y chromosome. Results were verified by examining the percentage of male calves per ejaculate used in artificial insemination (AI) and the percentage of male piglets per litter from a controlled mating program. Spermatozoal DNA was amplified by polymerase chain reaction with specific primers for the Y chromosome. Image analysis measured the fluorescent intensity of the 194-bp band. Ejaculates were compared with a pooled standard of spermatozoal DNA equated to a 50% Y-bearing sperm ejaculate. Calving data were obtained from information collected for the National Association of Animal Breeders for dystocia evaluation of cows bred to AI bulls. Breeding data were obtained from AI technician receipts. Calving and breeding data were merged on cow, sire, calving date, and breeding date. The percentage of males was calculated per sire, ejaculate, and herd combination. Farrowing data were evaluated for the percentage of male piglets per litter. Ejaculates within bulls contributed to variation (24 ± 9.8% to 84 ± 9.8%) in the percentage of sperm bearing the Y chromosome. Ejaculates from the same bull contributed to variation in the percentage of male calves (16.1 to 72.3%). Ejaculates from the same boar contributed to variation in the percentage of male piglets that ranged from 7.8 to 94.7%. These percentages and the results obtained by polymerase chain reaction analysis of ejaculates suggested that spermatozoa bearing X and Y chromosomes were unequally represented in ejaculates. The use of ejaculates screened by polymerase chain reaction could enhance production of the desired sex of calf
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions
Imaging biomarker roadmap for cancer studies.
Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution
Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113725/1/jmri24883.pd
Development of a multiparametric voxel-based magnetic resonance imaging biomarker for early cancer therapeutic response assessment
Quantitative magnetic resonance imaging (MRI)-based biomarkers, which capture physiological and functional tumor processes, were evaluated as imaging surrogates of early tumor response following chemoradiotherapy in glioma patients. A multiparametric extension of a voxel-based analysis, referred as the parametric response map (PRM), was applied to quantitative MRI maps to test the predictive potential of this metric for detecting response. Fifty-six subjects with newly diagnosed high-grade gliomas treated with radiation and concurrent temozolomide were enrolled in a single-site prospective institutional review board-approved MRI study. Apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps were acquired before therapy and 3 weeks after therapy was initiated. Multiparametric PRM (mPRM) was applied to both physiological MRI maps and evaluated as an imaging biomarker of patient survival. For comparison, single-biomarker PRMs were also evaluated in this study. The simultaneous analysis of ADC and rCBV by the mPRM approach was found to improve the predictive potential for patient survival over single PRM measures. With an array of quantitative imaging parameters being evaluated as biomarkers of therapeutic response, mPRM shows promise as a new methodology for consolidating physiologically distinct imaging parameters into a single interpretable and quantitative metric
Comparison of voxel-wise and histogram analyses of glioma ADC maps for prediction of early therapeutic change
Noninvasive imaging methods are sought to objectively predict early response to therapy for high-grade glioma tumors. Quantitative metrics derived from diffusion-weighted imaging, such as apparent diffusion coefficient (ADC), have previously shown promise when used in combination with voxel-based analysis reflecting regional changes. The functional diffusion mapping (fDM) metric is hypothesized to be associated with volume of tumor exhibiting an increasing ADC owing to effective therapeutic action. In this work, the reference fDM-predicted survival (from previous study) for 3 weeks from treatment initiation (midtreatment) is compared to multiple histogram-based metrics using Kaplan-Meier estimator for 80 glioma patients stratified to responders and nonresponders based on the population median value for the given metric. The ADC histogram metric reflecting reduction in midtreatment volume of solid tumor (ADC 8% population-median with respect to pretreatment is found to have the same predictive power as the reference fDM of increasing midtreatment ADC volume above 4%. This study establishes the level of correlation between fDM increase and low-ADC tumor volume shrinkage for prediction of early response to radiation therapy in patients with glioma malignancies
- …
