10,623 research outputs found
Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure
The temperature dependence of the thermoelectric power, S(T), and the
electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and
T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2
K < T < 300 K. Long-range magnetic order is suppressed at a p_c of
approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature
dependences, ranging from a behaviour characteristic for magnetically ordered
heavy fermion compounds to a typical behaviour of intermediate-valent systems.
At intermediate pressures a large positive maximum develops above 10 K in S(T).
Its origin is attributed to the Kondo effect and its position is assumed to
reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed
in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure
The Anti-Coincidence Detector for the GLAST Large Area Telescope
This paper describes the design, fabrication and testing of the
Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope
(GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against
the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders
of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector,
requiring a total active area of ~8.3 square meters. The ACD detector utilizes
plastic scintillator tiles with wave-length shifting fiber readout. In order to
suppress self-veto by shower particles at high gamma-ray energies, the ACD is
segmented into 89 tiles of different sizes. The overall ACD efficiency for
detection of singly charged relativistic particles entering the tracking
detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles
We report Muon Spin Relaxation studies in weak transverse fields of the
superconductivity in the metal cluster compound,
Ga[N(SiMe)]-LiBr(thf)2toluene. The temperature and field dependence of the muon spin relaxation
rate and Knight shift clearly evidence type II bulk superconductivity below
K, with T,
T, and weak flux pinning. The data
are well described by the s-wave BCS model with weak electron-phonon coupling
in the clean limit. A qualitative explanation for the conduction mechanism in
this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page
Static magnetic order in metallic KCoO
By means of muon spin spectroscopy, we have found that KCoO
crystals undergo successive magnetic transitions from a high-T paramagnetic
state to a magnetic ordered state below 60 K and then to a second ordered state
below 16 K, even though K_{0.49}CoO_2 is metallic at least down to 4 K. An
isotropic magnetic behavior and wide internal-field distributions suggest the
formation of a commensurate helical spin density wave (SDW) state below 16 K,
while a linear SDW state is likely to exist above 16 K. It was also found that
K_{0.49}CoO_2 exhibits a further transition at 150 K presumably due to a change
in the spin state of the Co ions. Since the T dependence of the internal-field
below 60 K was similar to that for Na_{0.5}CoO_2, this suggests that magnetic
order is more strongly affected by the Co valence than by the interlayer
distance/interaction and/or the charge-ordering.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Magnetic quantum critical point and superconductivity in UPt3 doped with Pd
Transverse-field muon spin relaxation measurements have been carried out on
the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find
that the critical Pd concentration for the emergence of the large-moment
antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content,
superconductivity is completely suppressed. The existence of a magnetic quantum
critical point in the phase diagram, which coincides with the critical point
for superconductivity, provides evidence for ferromagnetic spin-fluctuation
mediated odd-parity superconductivity, which competes with antiferromagnetic
order.Comment: 4 pages (includes 3 figures); postscript fil
Magnetic quantum critical point and superconductivity in UPt3 doped with Pd
Transverse-field muon spin relaxation measurements have been carried out on
the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find
that the critical Pd concentration for the emergence of the large-moment
antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content,
superconductivity is completely suppressed. The existence of a magnetic quantum
critical point in the phase diagram, which coincides with the critical point
for superconductivity, provides evidence for ferromagnetic spin-fluctuation
mediated odd-parity superconductivity, which competes with antiferromagnetic
order.Comment: 4 pages (includes 3 figures); postscript fil
Low-speed impact craters in loose granular media
We report on craters formed by balls dropped into dry, non-cohesive, granular
media. By explicit variation of ball density , diameter , and
drop height , the crater diameter is confirmed to scale as the 1/4 power of
the energy of the ball at impact:
. Against expectation, a different
scaling law is discovered for the crater depth:
. The scaling with properties of
the medium is also established. The crater depth has significance for granular
mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure
- …
