14,922 research outputs found
Dipole and monopole modes in the Bose-Hubbard model in a trap
The lowest-lying collective modes of a trapped Bose gas in an optical lattice
are studied in the Bose-Hubbard model. An exact diagonalization of the
Hamiltonian is performed in a one-dimensional five-particle system in order to
find the lowest few eigenstates. Dipole and breathing character of the
eigenstates is confirmed in the limit where the tunneling dominates the
dynamics, but under Mott-like conditions the excitations do not correspond to
oscillatory modes.Comment: 19 pages, 11 figures; submitted to Phys. Rev.
Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion
Reduced basis method for source mask optimization
Image modeling and simulation are critical to extending the limits of leading
edge lithography technologies used for IC making. Simultaneous source mask
optimization (SMO) has become an important objective in the field of
computational lithography. SMO is considered essential to extending immersion
lithography beyond the 45nm node. However, SMO is computationally extremely
challenging and time-consuming. The key challenges are due to run time vs.
accuracy tradeoffs of the imaging models used for the computational
lithography. We present a new technique to be incorporated in the SMO flow.
This new approach is based on the reduced basis method (RBM) applied to the
simulation of light transmission through the lithography masks. It provides a
rigorous approximation to the exact lithographical problem, based on fully
vectorial Maxwell's equations. Using the reduced basis method, the optimization
process is divided into an offline and an online steps. In the offline step, a
RBM model with variable geometrical parameters is built self-adaptively and
using a Finite Element (FEM) based solver. In the online step, the RBM model
can be solved very fast for arbitrary illumination and geometrical parameters,
such as dimensions of OPC features, line widths, etc. This approach
dramatically reduces computational costs of the optimization procedure while
providing accuracy superior to the approaches involving simplified mask models.
RBM furthermore provides rigorous error estimators, which assure the quality
and reliability of the reduced basis solutions. We apply the reduced basis
method to a 3D SMO example. We quantify performance, computational costs and
accuracy of our method.Comment: BACUS Photomask Technology 201
Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide
A deterministic design of an ultrahigh Q, wavelength scale mode volume
photonic crystal nanobeam cavity is proposed and experimentally demonstrated.
Using this approach, cavities with Q>10^6 and on-resonance transmission T>90%
are designed. The devices fabricated in Si and capped with low-index polymer,
have Q=80,000 and T=73%. This is, to the best of our knowledge, the highest
transmission measured in deterministically designed, wavelength scale high Q
cavities
A Waveguide for Bose-Einstein Condensates
We report on the creation of Bose-Einstein condensates of Rb in a
specially designed hybrid, dipole and magnetic trap. This trap naturally allows
the coherent transfer of matter waves into a pure dipole potential waveguide
based on a doughnut beam. Specifically, we present studies of the coherence of
the ensemble in the hybrid trap and during the evolution in the waveguide by
means of an autocorrelation interferometer scheme. By monitoring the expansion
of the ensemble in the waveguide we observe a mean field dominated acceleration
on a much longer time scale than in the free 3D expansion. Both the
autocorrelation interference and the pure expansion measurements are in
excellent agreement with theoretical predictions of the ensemble dynamics
Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe2As2
Using resistivity, heat-capacity, thermal-expansion, and susceptibility
measurements we study the normal-state behavior of KFe2As2. We find that both
the Sommerfeld coefficient gamma = 103 mJ mol-1 K-2 and the Pauli
susceptibility chi = 4x10-4 are strongly enhanced, which confirm the existence
of heavy quasiparticles inferred from previous de Haas-van Alphen and ARPES
experiments. We discuss this large enhancement using a Gutzwiller slave-boson
mean-field calculation, which reveals the proximity of KFe2As2 to an
orbital-selective Mott transition. The temperature dependence of the magnetic
susceptibility and the thermal expansion provide strong experimental evidence
for the existence of a coherence-incoherence crossover, similar to what is
found in heavy fermion and ruthenate compounds, due to Hund's coupling between
orbitals
A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the
most general case, be fully anisotropic, i.e. one has to distinguish three
diffusion axes in a local, field-aligned frame. We reexamine the transformation
for the diffusion tensor from this local to a global frame, in which the Parker
transport equation for energetic particles is usually formulated and solved.
Particularly, we generalize the transformation formulas to allow for an
explicit choice of two principal local perpendicular diffusion axes. This
generalization includes the 'traditional' diffusion tensor in the special case
of isotropic perpendicular diffusion. For the local frame, we motivate the
choice of the Frenet-Serret trihedron which is related to the intrinsic
magnetic field geometry. We directly compare the old and the new tensor
elements for two heliospheric magnetic field configurations, namely the hybrid
Fisk and the Parker field. Subsequently, we examine the significance of the
different formulations for the diffusion tensor in a standard 3D model for the
modulation of galactic protons. For this we utilize a numerical code to
evaluate a system of stochastic differential equations equivalent to the Parker
transport equation and present the resulting modulated spectra. The computed
differential fluxes based on the new tensor formulation deviate from those
obtained with the 'traditional' one (only valid for isotropic perpendicular
diffusion) by up to 60% for energies below a few hundred MeV depending on
heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap
- …
