3,327 research outputs found

    Open-charm meson spectroscopy

    Get PDF
    We present a theoretical framework that accounts for the new DJD_J and DsJD_{sJ} mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional PP-wave quark-antiquark states and four-quark components. The narrowest states are basically PP-wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold, being broad resonances. We study the electromagnetic decay widths as basic tools to scrutiny their nature. The proposed explanation incorporates in a natural way the most recently discovered mesons in charmonium spectroscopy.Comment: 15 pages, 5 tables. Accepted for publication in Phys. Rev.

    Five-quark components in Δ(1232)Nπ\Delta(1232)\to N\pi decay

    Full text link
    Five-quark qqqqqˉqqqq\bar q components in the Δ(1232)\Delta(1232) are shown to contribute significantly to Δ(1232)Nπ\Delta(1232)\to N\pi decay through quark-antiquark annihilation transitions. These involve the overlap between the qqqqqq and qqqqqˉqqqq\bar q components and may be triggered by the confining interaction between the quarks. With a \sim 10% admixture of five-quark components in the Δ(1232)\Delta(1232) the decay width can be larger by factors 2 - 3 over that calculated in the quark model with 3 valence quarks, depending on the details of the confining interaction. The effect of transitions between the qqqqqˉqqqq\bar q components themselves on the calculated decay width is however small. The large contribution of the quark-antiquark annihilation transitions thus may compensate the underprediction of the width of the Δ(1232)\Delta(1232) by the valence quark model, once the Δ(1232)\Delta(1232) contains qqqqqˉqqqq\bar q components with \sim 10% probability.Comment: accepted versio

    The \rho\rho interaction in the hidden gauge formalism and the f_0(1370) and f_2(1270) resonances

    Full text link
    We have studied the interaction of vectors mesons within the hidden gauge formalism and applied it to the particular case of the ρρ\rho \rho interaction. We find a strong attraction in the isospin, spin channels I,S=0,0 and 0,2, which is enough to bind the ρρ\rho \rho system. We also find that the attraction in the I,S=0,2 channel is much stronger than in the 0,0 case. The states develop a width when the ρ\rho mass distribution is considered, and particularly when the ππ\pi \pi decay channel is turned on. Using a regularization scheme with cut offs of natural size, we obtain results in fair agreement with the mass and the width of the f0(1370)f_0(1370) and f2(1270)f_2(1270) meson states, providing a natural explanation of why the tensor state is more bound than the scalar and offering a new picture for these states, which would be dynamically generated from the ρρ\rho \rho interaction or, in simpler words, ρρ\rho \rho molecular states.Comment: Version accepted for publicatio

    A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    Full text link
    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optical Raman laser beams independently. This presents a significantly simpler implementation of an atomic beam splitter, one of the main elements of coherent atom optics

    Spin of ground state baryons

    Full text link
    We calculate the quark spin contribution to the total angular momentum of flavor octet and flavor decuplet ground state baryons using a spin-flavor symmetry based parametrization method of quantum chromodynamics. We find that third order SU(6) symmetry breaking three-quark operators are necessary to explain the experimental result Sigma_1=0.32(10). For spin 3/2 decuplet baryons we predict that the quark spin contribution is Sigma_3=3.93(22), i.e. considerably larger than their total angular momentum.Comment: 8 page

    Epsilon Indi Ba/Bb: the nearest binary brown dwarf

    Full text link
    We have carried out high angular resolution near-infrared imaging and low-resolution (R~1000) spectroscopy of the nearest known brown dwarf, Eps Indi B, using the ESO VLT NAOS/CONICA adaptive optics system. We find it to be a close binary (as also noted by Volk et al. 2003) with an angular separation of 0.732 arcsec, corresponding to 2.65AU at the 3.626pc distance of the Eps Indi system. In our discovery paper (Scholz et al. 2003), we concluded that Eps Indi B was a ~50Mjup T2.5 dwarf: our revised finding is that the two system components (Eps Indi Ba and Eps Indi Bb) have spectral types of T1 and T6, respectively, and estimated masses of 47 and 28Mjup, respectively, assuming an age of 1.3Gyr. Errors in the masses are +/-10 and +/-7Mjup, respectively, dominated by the uncertainty in the age determination (0.8-2Gyr range). This uniquely well-characterised T dwarf binary system should prove important in the study of low-mass, cool brown dwarfs. The two components are bright and relatively well-resolved: Eps Indi B is the only T dwarf binary in which spectra have been obtained for both components. They have a well-established distance and age. Finally, their orbital motion can be measured on a fairly short timescale (nominal orbital period 15 yrs), permitting an accurate determination of the true total system mass, helping to calibrate brown dwarf evolutionary models.Comment: Accepted for publication by Astronomy & Astrophysics main journal. This replacement version includes minor changes made following comments by the referee, along with a reworking of the photometric data and derived quantities using 2MASS catalogue photometry as the basis, with only a minor impact on the final result

    Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup

    Full text link
    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum projection noise limited performance of a Ramsey type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.

    A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer

    Full text link
    This paper presents the first realisation of a simultaneous 87^{87}Rb -85^{85}Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the Weak Equivalence Principle rely on such a system. This implementation utilises hybrid magnetic-optical trapping to produce spatially overlapped condensates with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mirrors is used to simultaneously address both isotopes in the interferometer. We observe a non-linear phase shift on a non-interacting 85^{85}Rb interferometer as a function of interferometer time, TT, which we show arises from inter-isotope scattering with the co-incident 87^{87}Rb interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this manuscrip

    Sea Contributions and Nucleon Structure

    Full text link
    We suggest a general formalism to treat a baryon as a composite system of three quarks and a `sea'. In this formalism, the sea is a cluster which can consists of gluons and quark-antiquark pairs. The hadron wave function with a sea component is given. The magnetic moments, related sum rules and axial weak coupling constants are obtained. The data seems to favor a vector sea rather than a scalar sea. The quark spin distributions in the nucleon are also discussed.Comment: 24 page
    corecore