1,376 research outputs found
Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves
Two formulations of quantum mechanics, inequivalent in the presence of closed
timelike curves, are studied in the context of a soluable system. It
illustrates how quantum field nonlinearities lead to a breakdown of unitarity,
causality, and superposition using a path integral. Deutsch's density matrix
approach is causal but typically destroys coherence. For each of these
formulations I demonstrate that there are yet further alternatives in
prescribing the handling of information flow (inequivalent to previous
analyses) that have implications for any system in which unitarity or coherence
are not preserved.Comment: 25 pages, phyzzx, CALT-68-188
The Unruh-deWitt Detector and the Vacuum in the General Boundary formalism
We discuss how to formulate a condition for choosing the vacuum state of a
quantum scalar field on a timelike hyperplane in the general boundary
formulation (GBF) using the coupling to an Unruh-DeWitt detector. We explicitly
study the response of an Unruh-DeWitt detector for evanescent modes which occur
naturally in quantum field theory in the presence of the equivalent of a
dielectric boundary. We find that the physically correct vacuum state has to
depend on the physical situation outside of the boundaries of the spacetime
region considered. Thus it cannot be determined by general principles
pertaining only to a subset of spacetime.Comment: Version as published in CQ
Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics
We consider two approaches to evading paradoxes in quantum mechanics with
closed timelike curves (CTCs). In a model similar to Politzer's, assuming pure
states and using path integrals, we show that the problems of paradoxes and of
unitarity violation are related; preserving unitarity avoids paradoxes by
modifying the time evolution so that improbable events bewcome certain. Deutsch
has argued, using the density matrix, that paradoxes do not occur in the "many
worlds interpretation". We find that in this approach account must be taken of
the resolution time of the device that detects objects emerging from a wormhole
or other time machine. When this is done one finds that this approach is viable
only if macroscopic objects traversing a wormhole interact with it so strongly
that they are broken into microscopic fragments.Comment: no figure
The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine
We study the propagator of a non-relativistic, non-interacting particle in
any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an
external, flat spacetime in which two spatial regions, at time and
at time , are connected by two temporal wormholes, one leading from
the past side of to t the future side of and the other from the
past side of to the future side of . We express the propagator
explicitly in terms of those for ordinary, flat spacetime and for the two
wormholes; and from that expression we show that the propagator satisfies
completeness and unitarity in the initial and final ``chronal regions''
(regions without closed timelike curves) and its propagation from the initial
region to the final region is unitary. However, within the time machine it
satisfies neither completeness nor unitarity. We also give an alternative proof
of initial-region-to-final-region unitarity based on a conserved current and
Gauss's theorem. This proof can be carried over without change to most any
non-relativistic time-machine spacetime; it is the non-relativistic version of
a theorem by Friedman, Papastamatiou and Simon, which says that for a free
scalar field, quantum mechanical unitarity follows from the fact that the
classical evolution preserves the Klein-Gordon inner product
Simple Quantum Systems in Spacetimes with Closed Timelike Curves
Three simple examples illustrate properties of path integral amplitudes in
fixed background spacetimes with closed timelike curves: non-relativistic
potential scattering in the Born approximation is non-unitary, but both an
example with hard spheres and the exact solution of a totally discrete model
are unitary.Comment: 15 pages, CALT-68-180
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
Evolving Lorentzian Wormholes
Evolving Lorentzian wormholes with the required matter satisfying the Energy
conditions are discussed. Several different scale factors are used and the
corresponding consequences derived. The effect of extra, decaying (in time)
compact dimensions present in the wormhole metric is also explored and certain
interesting conclusions are derived for the cases of exponential and
Kaluza--Klein inflation.Comment: 10 pages( RevTex, Twocolumn format), Two figures available on request
from the first author. transmission errors corrected
Response of the Brazilian gravitational wave detector to signals from a black hole ringdown
It is assumed that a black hole can be disturbed in such a way that a
ringdown gravitational wave would be generated. This ringdown waveform is well
understood and is modelled as an exponentially damped sinusoid. In this work we
use this kind of waveform to study the performance of the SCHENBERG
gravitational wave detector. This first realistic simulation will help us to
develop strategies for the signal analysis of this Brazilian detector. We
calculated the signal-to-noise ratio as a function of frequency for the
simulated signals and obtained results that show that SCHENBERG is expected to
be sensitive enough to detect this kind of signal up to a distance of .Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution.
Submitted to Class. Quantum Gra
Fibre bundle formulation of nonrelativistic quantum mechanics: I. Introduction. The evolution transport
We propose a new systematic fibre bundle formulation of nonrelativistic
quantum mechanics. The new form of the theory is equivalent to the usual one
but it is in harmony with the modern trends in theoretical physics and
potentially admits new generalizations in different directions. In it a pure
state of some quantum system is described by a state section (along paths) of a
(Hilbert) fibre bundle. Its evolution is determined through the bundle
(analogue of the) Schr\"odinger equation. Now the dynamical variables and the
density operator are described via bundle morphisms (along paths). The
mentioned quantities are connected by a number of relations derived in this
work.
The present first part of this investigation is devoted to the introduction
of basic concepts on which the fibre bundle approach to quantum mechanics
rests. We show that the evolution of pure quantum-mechanical states can be
described as a suitable linear transport along paths, called evolution
transport, of the state sections in the Hilbert fibre bundle of states of a
considered quantum system.Comment: 26 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and
amsfonts are required. Revised: new material, references, and comments are
added. Minor style chages. Continuation of quan-ph/9803083. For continuation
of the this series see http://www.inrne.bas.bg/mathmod/bozhome
Unitarity Restoration in the Presence of Closed Timelike Curves
A proposal is made for a mathematically unambiguous treatment of evolution in
the presence of closed timelike curves. In constrast to other proposals for
handling the naively nonunitary evolution that is often present in such
situations, this proposal is causal, linear in the initial density matrix and
preserves probability. It provides a physically reasonable interpretation of
invertible nonunitary evolution by redefining the final Hilbert space so that
the evolution is unitary or equivalently by removing the nonunitary part of the
evolution operator using a polar decomposition.Comment: LaTeX, 17pp, Revisions: Title change, expanded and clarified
presentation of original proposal, esp. with regard to Heisenberg picture and
remaining in original Hilbert spac
- …
