32,773 research outputs found
An analytical study of electric vehicle handling dynamics
Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated
ADP correspondence system: Unsolicited proposal evaluation tracking application
A complete description of a correspondence control system, designed to be used by non-ADP clerical personnel is provided. In addition to operating instructions, sufficient design and conceptual information is provided to allow use or adaption of the system in related applications. The complete COBOL program and documentation are available
The Development of Equilibrium After Preheating
We present a fully nonlinear study of the development of equilibrium after
preheating. Preheating is the exponentially rapid transfer of energy from the
nearly homogeneous inflaton field to fluctuations of other fields and/or the
inflaton itself. This rapid transfer leaves these fields in a highly nonthermal
state with energy concentrated in infrared modes. We have performed lattice
simulations of the evolution of interacting scalar fields during and after
preheating for a variety of inflationary models. We have formulated a set of
generic rules that govern the thermalization process in all of these models.
Notably, we see that once one of the fields is amplified through parametric
resonance or other mechanisms it rapidly excites other coupled fields to
exponentially large occupation numbers. These fields quickly acquire nearly
thermal spectra in the infrared, which gradually propagates into higher
momenta. Prior to the formation of total equilibrium, the excited fields group
into subsets with almost identical characteristics (e.g. group effective
temperature). The way fields form into these groups and the properties of the
groups depend on the couplings between them. We also studied the onset of chaos
after preheating by calculating the Lyapunov exponent of the scalar fields.Comment: 15 pages, 23 figure
Baby-Step Giant-Step Algorithms for the Symmetric Group
We study discrete logarithms in the setting of group actions. Suppose that
is a group that acts on a set . When , a solution
to can be thought of as a kind of logarithm. In this paper, we study
the case where , and develop analogs to the Shanks baby-step /
giant-step procedure for ordinary discrete logarithms. Specifically, we compute
two sets such that every permutation of can be
written as a product of elements and . Our
deterministic procedure is optimal up to constant factors, in the sense that
and can be computed in optimal asymptotic complexity, and and
are a small constant from in size. We also analyze randomized
"collision" algorithms for the same problem
Ultracold atom-molecule collisions with fermionic atoms
Elastic and inelastic properties of weakly bound s- and p-wave molecules of
fermionic atoms that collide with a third atom are investigated. Analysis of
calculated collisional properties of s-wave dimers of fermions in different
spin states permit us to compare and highlight the physical mechanisms that
determine the stability of s-wave and p-wave molecules. In contrast to s-wave
molecules, the collisional properties of p-wave molecules are found to be
largely insensitive to variations of the p-wave scattering length and that
these collisions will usually result in short molecular lifetimes. We also
discuss the importance of this result for both theories and experiments
involving degenerate Fermi gases.Comment: 6 pages, 2 figure
- …
