2,846 research outputs found
Double-layer shocks in a magnetized quantum plasma
The formation of small but finite amplitude electrostatic shocks in the
propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external
magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma.
Such shocks are seen to have double-layer (DL) structures composed of the
compressive and accompanying rarefactive slow-wave fronts. Existence of such DL
shocks depends critically on the quantum coupling parameter associated with
the Bohm potential and the positron to electron density ratio . The
profiles may, however, steepen initially and reach a steady state with a number
of solitary waves in front of the shocks. Such novel DL shocks could be a good
candidate for particle acceleration in intense laser-solid density plasma
interaction experiments as well as in compact astrophysical objects, e.g.,
magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E
Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors
In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we
have shown that the lifting of the electron spin degeneracy in the integer
quantum Hall effect at high filling factors should be interpreted as a
magnetic-field-induced Stoner transition. In this work, we extend the analysis
to investigate the influence of the single-particle Zeeman energy on the
quantum Hall ferromagnet at high filling factors. The single-particle Zeeman
energy is tuned through the application of an additional in-plane magnetic
field. Both the evolution of the spin polarization of the system and the
critical magnetic field for spin splitting are well described as a function of
the tilt angle of the sample in the magnetic field.Comment: Published in Phys. Rev.
Quantum effects in linear and non-linear transport of T-shaped ballistic junction
We report low-temperature transport measurements of three-terminal T-shaped
device patterned from GaAs/AlGaAs heterostructure. We demonstrate the mode
branching and bend resistance effects predicted by numerical modeling for
linear conductance data. We show also that the backscattering at the junction
area depends on the wave function parity. We find evidence that in a non-linear
transport regime the voltage of floating electrode always increases as a
function of push-pull polarization. Such anomalous effect occurs for the
symmetric device, provided the applied voltage is less than the Fermi energy in
equilibrium
Multilingual gendered identities: female undergraduate students in London talk about heritage languages
In this paper I explore how a group of female university students, mostly British Asian and in their late teens and early twenties, perform femininities in talk about heritage languages. I argue that analysis of this talk reveals ways in which the participants enact ‘culturally intelligible’ gendered subject positions. This frequently involves negotiating the norms of ‘heteronormativity’, constituting femininity in terms of marriage, motherhood and maintenance of heritage culture and language, and ‘girl power’, constituting femininity in terms of youth, sassiness, glamour and individualism. For these young women, I ask whether higher education can become a site in which they have the opportunities to explore these identifications and examine other ways of imagining the self and what their stories suggest about ‘doing being’ a young British Asian woman in London
Quantum-mechanical calculation of Stark widths of Ne VII n=3, transitions
The Stark widths of the Ne VII 2s3s-2s3p singlet and triplet lines are
calculated in the impact approximation using quantum-mechanical Convergent
Close-Coupling and Coulomb-Born-Exchange approximations. It is shown that the
contribution from inelastic collisions to the line widths exceeds the elastic
width contribution by about an order of magnitude. Comparison with the line
widths measured in a hot dense plasma of a gas-liner pinch indicates a
significant difference which may be naturally explained by non-thermal Doppler
effects from persistent implosion velocities or turbulence developed during the
pinch implosion. Contributions to the line width from different partial waves
and types of interactions are discussed as well.Comment: 8 pages, 3 figures; accepted by Phys. Rev.
Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy
We find that the long-wavelength magnetoplasmon, resistively detected by
photoconductivity spectroscopy in high-mobility two-dimensional electron
systems, deviates from its well-known semiclassical nature as uncovered in
conventional absorption experiments. A clear filling-factor dependent
plateau-type dispersion is observed that reveals a so far unknown relation
between the magnetoplasmon and the quantum Hall effect.Comment: 5 pages, 3 figure
Constructing Qubits in Physical Systems
The notion of a qubit is ubiquitous in quantum information processing. In
spite of the simple abstract definition of qubits as two-state quantum systems,
identifying qubits in physical systems is often unexpectedly difficult. There
are an astonishing variety of ways in which qubits can emerge from devices.
What essential features are required for an implementation to properly
instantiate a qubit? We give three typical examples and propose an operational
characterization of qubits based on quantum observables and subsystems.Comment: 16 pages, no figures; IoP LaTeX2e style. Submitted to J. Phys. A:
Math. Ge
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
- …
