14,347 research outputs found

    Just below the surface: developing knowledge management systems using the paradigm of the noetic prism

    Get PDF
    In this paper we examine how the principles embodied in the paradigm of the noetic prism can illuminate the construction of knowledge management systems. We draw on the formalism of the prism to examine three successful tools: frames, spreadsheets and databases, and show how their power and also their shortcomings arise from their domain representation, and how any organisational system based on integration of these tools and conversion between them is inevitably lossy. We suggest how a late-binding, hybrid knowledge based management system (KBMS) could be designed that draws on the lessons learnt from these tools, by maintaining noetica at an atomic level and storing the combinatory processes necessary to create higher level structure as the need arises. We outline the “just-below-the-surface” systems design, and describe its implementation in an enterprise-wide knowledge-based system that has all of the conventional office automation features

    The cat's cradle network

    Get PDF
    In this paper we will argue that the representation of context in knowledge management is appropriately served by the representation of the knowledge networks in an historicised form. Characterising context as essentially extra to any particular knowledge representation, we argue that another dimension to these be modelled, rather than simply elaborating a form in its own terms. We present the formalism of the cat's cradle network, and show how it can be represented by an extension of the Pathfinder associative network that includes this temporal dimension, and allows evolutions of understandings to be traced. Grounding its semantics in communities of practice ensures utility and cohesiveness, which is lost when mere externalities of a representation are communicated in fully fledged forms. The scheme is general and subsumes other formalisms for knowledge representation. The cat's cradle network enables us to model such community-based social constructs as pattern languages, shared memory and patterns of trust and reliance, by placing their establishment in a structure that shows their essential temporality

    The Noetic Prism

    Get PDF
    Definitions of ‘knowledge’ and its relationships with ‘data’ and ‘information’ are varied, inconsistent and often contradictory. In particular the traditional hierarchy of data-information-knowledge and its various revisions do not stand up to close scrutiny. We suggest that the problem lies in a flawed analysis that sees data, information and knowledge as separable concepts that are transformed into one another through processing. We propose instead that we can describe collectively all of the materials of computation as ‘noetica’, and that the terms data, information and knowledge can be reconceptualised as late-binding, purpose-determined aspects of the same body of material. Changes in complexity of noetica occur due to value-adding through the imposition of three different principles: increase in aggregation (granularity), increase in set relatedness (shape), and increase in contextualisation through the formation of networks (scope). We present a new model in which granularity, shape and scope are seen as the three vertices of a triangular prism, and show that all value-adding through computation can be seen as movement within the prism space. We show how the conceptual framework of the noetic prism provides a new and comprehensive analysis of the foundations of computing and information systems, and how it can provide a fresh analysis of many of the common problems in the management of intellectual resources

    A knowledge development lifecycle for reflective practice

    Get PDF
    Reflective practice is valuable because of its potential for continuous improvement through feedback and learning. Conventional models of knowledge practice however do not explicitly include reflection as part of the practice, nor locate it in a developmental cycle. They focus on modelling in a knowledge plane which itself is contextualised by active knowing processes, and ignore the influence of power in their activity models. Further, many models focus on either an artefact or a process view, resulting from a conceptual disconnect between knowledge and knowing, and failure to relate passive to active views. Using the idea of higher order loops that govern knowledge development processes, in this paper we propose a conceptualisation of a reflective Knowledge Development Life Cycle (KDLC). This explicitly includes the investigator and the organisation itself as dynamic components of a systemic process and is suited to either a constructivist or realist epistemological stance. We describe the stages required in the KDLC and discuss their significance. Finally we show how incorporation of reflection into process enables dynamic interplay between the knowing and the knowledge in the organisation

    Cohesion of BaReH9_9 and BaMnH9_9: Density Functional Calculations and Prediction of (MnH9)2_9)^{2-} Salts

    Full text link
    Density functional calculations are used to calculate the structural and electronic properties of BaReH9_9 and to analyze the bonding in this compound. The high coordination in BaReH9_9 is due to bonding between Re 5dd states and states of dd-like symmetry formed from combinations of H ss orbitals in the H9_9 cage. This explains the structure of the material, its short bond lengths and other physical properties, such as the high band gap. We compare with results for hypothetical BaMnH9_9, which we find to have similar bonding and cohesion to the Re compound. This suggests that it may be possible to synthesize (MnH9)2_9)^{2-} salts. Depending on the particular cation, such salts may have exceptionally high hydrogen contents, in excess of 10 weight

    Pulsar timing analysis in the presence of correlated noise

    Full text link
    Pulsar timing observations are usually analysed with least-square-fitting procedures under the assumption that the timing residuals are uncorrelated (statistically "white"). Pulsar observers are well aware that this assumption often breaks down and causes severe errors in estimating the parameters of the timing model and their uncertainties. Ad hoc methods for minimizing these errors have been developed, but we show that they are far from optimal. Compensation for temporal correlation can be done optimally if the covariance matrix of the residuals is known using a linear transformation that whitens both the residuals and the timing model. We adopt a transformation based on the Cholesky decomposition of the covariance matrix, but the transformation is not unique. We show how to estimate the covariance matrix with sufficient accuracy to optimize the pulsar timing analysis. We also show how to apply this procedure to estimate the spectrum of any time series with a steep red power-law spectrum, including those with irregular sampling and variable error bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA

    Space missions to comets

    Get PDF
    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed
    corecore